ARTERIELLE HYPERTONIE | [110.90]

Internet-Infos: www.hochdruckliga.de

Def: Nach den Leitlinien der European Society of Hypertension (ESH) und der European Society of Cardiology (ESC) 2018 liegt eine Hypertonie vor, wenn die systolischen Blutdruckwerte 140 mmHg und/oder die diastolischen Blutdruckwerte 90 mmHg übersteigen.

Kategorie	Systolisch (mmHg)	Diastolisch (mmHg)
Optimal	< 120 und	< 80
Normal	120 - 129 und/oder	80 - 84
Hoch-normal	130 - 139 und/oder	85 - 89
Hypertonie Grad 1	140 - 159 und/oder	90 - 99
Hypertonie Grad 2	160 - 179 und/oder	100 -109
Hypertonie Grad 3	≥ 180 und/oder	> 110
Isolierte syst. Hypertonie	≥ 140 und	< 90

Anm.: Die US-Leitlinie 2017 definiert Blutdruckwerte > 130/80 mmHg als Hypertonie Grad 1. Diese niedrige Grenze wird von der ESH/ESC nicht übernommen.

Die Höhe des systolischen Blutdrucks ist der beste Prädiktor für Schlaganfall und KHK, der Pulsdruck (= RRsyst. - RRdiast.) ist der beste Prädiktor für Herzinsuffizienz und Gesamtsterblichkeit. Ein hoher Pulsdruck ist bei älteren Hochdruckpatienten mit erhöhtem Risiko für Demenzentwicklung assoziiert.

Die arterielle Hypertonie ist die häufigste internistische Erkrankung. Nach der "Global Burden of <u>Ep.</u> Disease Study" von 2015 gilt die Hypertonie als bedeutendster Risikofaktor bezüglich Lebensqualität und Lebenserwartung.

In Europa liegt die Prävalenz der arteriellen Hypertonie bei Erwachsenen bei ca. 30 % (bei älteren Menschen höher). In den Industrienationen steigen der systolische Blutdruck und die Prävalenz des Hypertonus mit dem Lebensalter, während der diastolische Blutdruck ab dem 60. Lebensjahr absinkt. Die Häufigkeit des arteriellen Hypertonus ist auch abhängig vom Körpergewicht, sozioökonomischen Status und Geschlecht (häufiger bei Männern, aber zunehmend bei Frauen nach der Menopause).

Viele Hypertoniker wissen nichts von ihrer Erkrankung (→ Vorsorgeuntersuchung mit RR-Messung!).

PPh: Eine Hypertonie ist die Folge eines erhöhten Herzzeitvolumens, eines erhöhten peripheren Widerstandes oder beider Faktoren.

In Ableitung vom Ohm-Gesetz gilt: Blutdruck = Herzzeitvolumen x Gefäßwiderstand Mit zunehmendem Alter überwiegt pathophysiologisch oft eine Erhöhung des peripheren Widerstandes sowie eine erhöhte Gefäßsteifigkeit mit vorwiegend systolischer Hypertonie. In akzelerierten Phasen (hypertensive Krisen) kann es zu fibrinoiden Arteriolonekrosen kommen, die zu Verschluss und Ischämie des nachgeschalteten Gefäßgebietes führen.

Ät.: 1. Primäre Hypertonie (ca. 90 % aller Hypertoniker):

Die primäre, essenzielle oder idiopathische Hypertonie ist definiert als hoher Blutdruck, bei dem sekundäre Ursachen nicht vorhanden sind (Ausschlussdiagnose!). Ein primärer Hypertonus wird in der Regel erst jenseits des 30. Lebensjahres apparent und stellt eine multifaktorielle, polygene Erkrankung dar. Ernährungsfaktoren (Übergewicht, Insulinresistenz, erhöhter Alkoholkonsum, vermehrte Kochsalzaufnahme), Stressfaktoren, Rauchen, zunehmendes Alter, Immobilität, niedriger sozioökonomischer Status sowie erniedrigte Kalium- und Kalziumaufnahme sind begünstigende Faktoren.

- 2. Sekundäre Hypertonieformen (ca. 10 % aller Hypertoniepatienten):
 - Schlafapnoe-Syndrom
 - Renale Hypertonie:
 - Renoparenchymatöse Erkrankungen (z.B. Glomerulonephritis, diabetische Glomerulosklerose, autosomal dominante polyzystische Nephropathie etc.)
 - Renovaskuläre Hypertonie (Nierenarterienstenose)
 - Endokrine Hypertonie:
 - Primärer Hyperaldosteronismus (Conn-Syndrom); sekundärer Hyperaldosteronismus
 - Phäochromozytom
 - M. Cushing und Cushing-Syndrom
 - AGS, Akromegalie
 - Hyperthyreose

- Andere sekundäre Hypertonieformen:
 - Aortenisthmusstenose, Aortenklappensklerose
 - Neurogen (z.B. bei Enzephalitis)
 - Psychogen (z.B. bei Schmerzen)
 - SLE, Vaskulitiden
 - latrogen (Ovulationshemmer, Steroide, Erythropoetin, NSAR, Ciclosporin, Bevacizumab, Sunitinib, Sorafenib u.a.)
 - Lakritz
 - Toxisch/Drogen
- Monogenetische Hypertonieformen sind sehr selten: Liddle-Syndrom, Syndrom des apparenten Mineralokortikoidexzesses (AME), Glukokortikoid-supprimierbarer Hyperaldosteronismus, Gordon-Syndrom, Mutationen im CYP11B1- und CYP17A1-Gen, Glukokortikoid-resistenz; Bilginturan-Syndrom (autosomal-dominante Hypertonie mit Brachydaktylie bei wenigen türkischen Patienten) u.a.

Hypertensive Schwangerschaftserkrankungen (HES): [O13]

Vo.: 6 - 8 % aller Schwangerschaften

Risikofaktoren: Mütterliches Alter > 40 J., Mehrlingsschwangerschaft u.a.

Hypertonie während der Schwangerschaft ist assoziiert mit erhöhtem Risiko für Frühgeburten, untergewichtigen und zu kleinen Neugeborenen. Auch ist das Risiko für perinatale Sterblichkeit von Mutter und Kind erhöht. Kinder von Müttern mit Gestationshypertonie zeigen im späteren Leben ein erhöhtes Risiko für Hypertonie und die Mütter ein erhöhtes kardiovaskuläres Risiko.

Klassifikation nach der International Society for the Study of Hypertension in Pregnancy (ISSHP)

- 1. <u>Chronische Hypertonie:</u> Arterielle Hypertonie <u>bereits vor der Schwangerschaft</u>. Da bei zahlreichen Patientinnen die Blutdruckwerte vor der Schwangerschaft nicht gemessen wurden, sind die RR-Werte im 1. Trimenon maßgebend, um eine Normotonie oder eine Hypertonie zu definieren.
- 2. <u>Gestationshypertonie:</u> De novo-Hypertonie <u>nach der 20. SSW</u> ohne Koexistenz von weiteren Abnormitäten, welche die Präeklampsie definieren. Die Prognose ist in der Regel günstig, allerdings kann sie in 25 % der Fälle in eine Präeklampsie übergehen.
- 3. <u>Präeklampsie:</u> De novo-Hypertonie <u>nach der 20. SSW</u> und Koexistenz von einer der folgenden neu aufgetretenen Abnormitäten:
 - Proteinurie (Protein-/Kreatinin-Ratio ≥ 0,3 mg/mg oder ≥ 300 mg/d)
 - Andere mütterliche Organdysfunktion:
 - Niereninsuffizienz (Kreatinin ≥ 90 µmol/l bzw. 1,02 mg/dl)
 - Leberbeteiligung (Transaminasen mind. auf das 2fache erhöht oder starke Schmerzen im rechten oder mittleren Oberbauch)
 - Neurologische Komplikationen (z.B. Eklampsie, veränderter Mentalzustand, starke Kopfschmerzen, Hyperreflexie mit Kloni, Erblindung, Schlaganfall)
 - Hämatologische Komplikationen (Thrombozytopenie, DIC; Hämolyse)
 - Uteroplazentare Dysfunktion: Fetale Wachstumsretardierung

<u>Merke:</u> Eine schwere Hypertonie ist ein signifikanter Prädiktor für erhöhte mütterliche und kindliche Komplikationen. Frauen mit einer Hypertonie in der Schwangerschaft, insbesondere mit einer Präeklampsie haben ein lebenslang gesteigertes kardiovaskuläres Risiko.

Unter <u>HELLP-Syndrom</u> versteht man die Kombination aus Hämolyse, erhöhten Leberenzymen und Thrombozytopenie. Diese Konstellation ist eine schwerwiegende Variante im Krankheitsspektrum der Präeklampsie und stellt keine isolierte oder separate Erkrankung dar.

Eine <u>Gestationsproteinurie</u> ist definiert durch eine neu aufgetretene Proteinurie in der Schwangerschaft ohne die genannten Kriterien der Präeklampsie oder Hinweise auf eine primäre Nierenerkrankung. In aller Regel verschwindet die Proteinurie post partum. Empfohlen werden häufigere Kontrolluntersuchungen.

<u>Merke:</u> In der Regel kommt es bei der Mehrzahl der Patientinnen in der Schwangerschaft zu einer Verschlechterung einer präexistenten Nierenerkrankung. Daher sorgfältige Planung in Kooperation zwischen Gynäkologen und Nephrologen und engmaschiges Monitoring.

Sonderformen der Blutdruckerhöhung:

1. Isolierter Praxishochdruck ("Weißkittelhochdruck"):

Praxisblutdruckwerte wiederholt ≥ 140/90 mmHg, aber normale Werte im ambulanten Blutdruckmonitoring (ABDM) oder bei häuslichen Messungen. Erhöhtes Mortalitätsrisiko.

2. Isolierter ambulanter Hypertonus (maskierter Hypertonus):

Praxisblutdruckwerte normal (< 140/90 mmHg), aber erhöhte Blutdruckwerte bei den häuslichen Messungen oder bei ABDM. Der Begriff ist reserviert für Patienten ohne antihypertensi-

ve Behandlung. Bei Patienten mit behandeltem Hochdruck wird die Anwesenheit eines residualen maskierten Hypertonus <u>"maskierter unkontrollierter Hypertonus"</u> = <u>MUCH</u> genannt. Häufiger im jüngeren Alter bei männlichem Geschlecht, Rauchern, erhöhtem Alkoholkonsum, Stress, Diabetes mellitus und familiärer Hypertoniebelastung. Das Mortalitätsrisiko ist so hoch wie bei unbehandelter Hypertonie.

3. Juvenile isolierte systolische Hypertonie (ISH): Betrifft große, schlanke sportliche Jugendliche und junge Erwachsene mit normalem aortalen Blutdruck und erhöhten systolischen Werten bei der konventionellen brachialen Messung. Keine antihypertensive Therapie

Beurteilung des kardiovaskulären (CV) Gesamtrisikos (RF = Risikofaktor)

Das 10-Jahres-Risiko für kardiovaskuläre Erkrankungen kann mit Hilfe von Kalkulatoren berechnet werden (siehe Kap. KHK und Kap. Lipidstoffwechselstörungen). Der PROCAM-Risikokalkulator bezieht sich auf tödliche + nichttödliche Ereignisse (Herzinfarkte, Schlaganfälle); der ESC-Risikokalkulator bezieht sich nur auf tödliche Ereignisse.

Patienten mit hohem CV-Risiko haben ein 10-Jahresrisiko von > 5 % (ESC-Score) bzw. 20 % (PRO-<u>CAM-Score</u>). Im Internet finden sich die Kalkulatoren und auch Risikotabellen.

Folgende Risikofaktoren bedeuten in jedem Fall ein hohes kardiovaskuläres Risiko: Diabetes mellitus. klinisch manifeste kardiovaskuläre Erkrankungen (siehe unten), chronische Niereninsuffizienz (ab St. 3).

Faktoren, die das kardiovaskuläre Risiko und die Prognose bestimmen:

Risikofaktoren für kardiovaskuläre Erkrankung	Endorganschaden	Diabetes mellitus	Klinisch manifeste kardiovaskuläre oder renale Erkrankung
 Arterielle Hypertonie Lebensalter: Männer > 55 Jahre Frauen > 65 Jahre Rauchen Dyslipidämie: Gesamtcholesterin ↑ LDL-Cholesterin ↑ HDL-Cholesterin ↓ (siehe dort) Abnorme Nüchternglukose Familienanamnese für frühzeitige kardiovaskulären Erkrankungen - im Alter von 55 Jahre (m) 65 Jahre (w) Bauchfettleibigkeit (Bauchumfang m ≥ 102 cm, w ≥ 88 cm) BMI ≥ 30 kg/m² 	 Linksventrikuläre Hypertrophie (Echo) Sonografische Karotisveränderungen (Carotis-IMT ≥ 0,9 mm*) oder atherosklerotische Plaques) Serum-Kreatinin † bzw. Kreatinin-Clearance ↓ GFR ↓ (MDRD-Formel) Mikroalbuminurie (30-300 mg/24h) Pulsdruck**) bei Älteren ≥ 60 mmHg Pulswellengeschwindigkeit > 10 m/s Knöchel-Arm-Index < 0,9 	Eigenständiger Risikofaktor: Erhöht das Ri- siko allein um über 100 %!	 Zerebrovaskuläre Erkrankungen: Ischämischer Schlaganfall Zerebrale Blutung Transiente ischämische Attacke Herzerkrankungen: KHK, Myokardinfarkt, ACS Herzinsuffizienz Hypertrophe Kardiomyopathie Chronische Niereninsuffizienz mit eGFR < 30 ml/min Proteinurie (> 300 mg/24 h) PAVK Fortgeschrittene Retinopathie: Hämorrhagie oder Exsudate, Papillenödem

^{*)} IMT = intima media thickness = Intima-Media-Dicke; **) Pulsdruck = RRsyst. - RRdiast.

Beschwerden können längere Zeit fehlen, typisch ist der frühmorgendlich auftretende Kopfschmerz (bes. im Bereich des Hinterkopfes), der sich durch Höherstellen des Bettkopfendes oft bessert. Bei nächtlicher Hypertonie Schlafstörungen. Schwindel, Ohrensausen, Nervosität, Präkordialschmerz, Herzklopfen, vasomotorische Labilität, Nasenbluten, Belastungsdyspnoe. Häufig wird eine arterielle Hypertonie erst durch Komplikationen klinisch auffällig.

- ► <u>Hypertensive Krise und hypertensiver Notfall</u> (siehe weiter unten) K<u>o.:</u>
 - ▶ Gefäßsystem: Eine frühzeitige Arteriosklerose entwickeln die Mehrzahl aller Hypertoniker.
 - Hypertoniebedingte Gefäßveränderungen am Augenhintergrund:
 - 4 Stadien der hypertensiven Retinopathie (Fundus hypertonicus) nach Keith & Wagner
 - St. I:
 - <u>Funktionelle Gefäßveränderungen:</u> Arterioläre Vasokonstriktion <u>Zusätzlich strukturell veränderte Gefäße:</u> Kupferdrahtarterien mit Kaliberunregel-St. II: mäßigkeiten, Salus-Gunn-Kreuzungszeichen (an den arteriovenösen Kreuzungen)
 - St. III: Zusätzlich Schäden der Netzhaut: Streifenhämorrhagien, "cotton-wool"-Herde), makuläre Sternfigur (kalkspritzerartige Herde um die Makula herum)
 - St. IV: Zusätzlich bilaterales Papillenödem

- Sonografischer Nachweis einer <u>Verdickung der Wand der A. carotis</u> (Intima-/Mediadicke ≥ 0,9 mm) oder Nachweis arteriosklerotischer Plaques
- ► <u>Herz:</u> Linksherzinsuffizienz und koronare Herzkrankheit sind Todesursache bei 2/3 aller Hypertoniker. Unter <u>hypertensiver Herzkrankheit</u> versteht man alle krankhaften Hypertoniefolgen am Herzen:
 - <u>Druckhypertrophie des linken Ventrikels:</u> Anfangs konzentrische Hypertrophie, jenseits des kritischen Herzgewichtes von 500 g Übergang in exzentrische Hypertrophie mit Vermehrung der Herzmuskelfasern (Hyperplasie)

<u>Hypertensive Kardiomyopathie</u> (I11.90]: <u>Diastolische Dysfunktion</u> (Frühsymptom) und später auch systolische Funktionsstörung des Hypertonieherzens und <u>Ausbildung einer</u> Insuffizienz des linken Ventrikels.

<u>Anm.:</u> Wenn bei dekompensierter Linksherzinsuffizienz der Blutdruck fällt, spricht man von "geköpfter" Hypertonie.

<u>Echokardiografie</u>: Goldstandard zum Nachweis einer Linksherzhypertrophie: Septumdicke enddiastolisch > 11 mm (Messpunkt in Höhe der geöffneten Mitralklappe).

MRT hat die höchste Sensitivität und Spezifität

<u>Röntgen:</u> Bei leichter Linkshypertrophie keine Röntgenveränderungen im p.a.-Bild, später Verlängerung des Herzens nach links unten und Aortenelongation. Bei dekompensierter Insuffizienz des linken Ventrikels Verbreiterung des Herzens nach links.

<u>Ekg:</u> Rel. niedrige Sensitivität bei der Erfassung einer Linksherzhypertrophie (Sokolow-Lyon-Index: SV1 + RV5 oder V6 > 3,5 mV), später Erregungsrückbildungsstörungen links präkordial

- <u>Koronare Herzkrankheit</u> (Makroangiopathie) mit ihren 5 Manifestationsformen: Angina pectoris, Herzinfarkt, Linksherzinsuffizienz, Herzrhythmusstörungen, plötzlicher Herztod
- Koronare Mikroangiopathie
- <u>Endotheldysfunktion</u> mit verminderter Bildung von vasodilatierendem NO (Stickstoffmonoxid) und vermehrter Bildung von vasokonstriktorisch wirkendem Angiotensin II und Endothelin
- ► <u>Gehirn:</u> Ca. 50 % der Schlaganfälle sind Folge einer Hypertonie und Todesursache bei ca. 15 % der Hypertoniker.
 - <u>Zerebrale Ischämie und Hirninfarkt</u> meist auf dem Boden einer Arteriosklerose extra- und intrakranieller Gefäße.
 - <u>Hypertonische Massenblutung:</u> Häufigkeitsrelation ischämischer Infarkt zu Massenblutung 85 : 15
 - Akute Hochdruckenzephalopathie [167.4]: Siehe oben
- ► <u>Hypertensive Nephropathie</u> [I12.90]- 3 Stadien:
 - Mikroalbuminurie (30 300 mg/d oder 20 200 mg/l)
 - Benigne hypertensive Nephrosklerose mit Albuminurie > 300 mg/d
 - Arterio-arteriolosklerotische Schrumpfnieren mit Niereninsuffizienz

Über den Mechanismus einer verminderten Nierendurchblutung mit Aktivierung des Renin-Angiotensin-Aldosteron-(RAA-)Systems kann jede Hypertonie (sowohl die essenzielle wie auch die sekundäre renale Hypertonie) zu einer renalen Fixierung des Bluthochdrucks führen (sodass beispielsweise auch nach Beseitigung einer Nierenarterienstenose der Blutdruck erhöht bleibt).

- ► Bauchaortenaneurysma: 10 % der männlichen Hypertoniker > 65 J. (siehe dort)
- ► <u>Aortendissektion:</u> Ca. 80 % der Patienten sind Hypertoniker (siehe dort)
- ▶ Maligne Hypertonie:
 - Diastolischer Blutdruck > 120 130 mmHg
 - Aufgehobener Tag-Nacht-Rhythmus des Blutdrucks bei Langzeitmessung
 - Vaskuläre Schäden, insbes. Augenhintergrundveränderungen St. III IV
 - Entwicklung einer Niereninsuffizienz

Maligne Hypertonien können sich auf dem Boden jeder Hochdruckform entwickeln.

Bei maligner Hypertonie kommt es zu einer sekundären malignen Nephrosklerose.

Hi.: Im Bereich der Vasa afferentia kommt es zu fibrinoiden Arteriolonekrosen. An den Interlobulärarterien findet sich eine proliferative Endarteriitis mit zwiebelschalenartiger Anordnung verdickter Intimazellen um das Gefäßlumen ("onion-skin"-Läsion) und Gefäßverschlüssen mit ischämischer Verödung der Glomeruli.

Therapieziel: Diastolischer Blutdruck 100 bis 110 mmHg innerhalb 24 h Unbehandelt versterben 50 % der Betroffenen innerhalb eines Jahres!

Diagnostik der arteriellen Hypertonie:

- 1. Ein Screening auf eine arterielle Hypertonie sollte bei Erwachsenen bereits ab dem Alter von 18 Jahren und danach alle 5 Jahre, bei hochnormalem Blutdruck jährlich durchgeführt werden.
- 2. Bestimmung des Schweregrades der Hypertonie
- 3. Differenzierung zwischen primärer und sekundärer Hypertonie
- 4. Erkennen von:
 - Weiteren kardiovaskulären Risikofaktoren
 - Klinischen Organschäden
 - Folge- und Begleiterkrankungen

Blutdruckmessung:

- Messung des Blutdrucks durch den Arzt ("Gelegenheitsmessung" oder "Praxismessung")
- Selbstmessung unter häuslichen Bedingungen durch den Patienten
- Ambulante 24-Std. -Blutdruckmessung
- Blutdruckmessung unter definierter Belastung

Messmethoden:

- 1. Direkte (blutige) Methode mit Statham-Druckwandler: Intensivstation, Op., Herzkatheter
- 2. Indirekte, sphygmomanometrische Methode nach Riva-Rocci (RR)

Blutdruckmessgeräte:

- Mechanische Geräte mit Auskultation der Korotkoff-Geräusche
- Oszillometrisch messende Vollautomaten (werten meist Pulswellenform des arteriellen Blutflusses aus)
- Automatische Handgelenkmessgeräte

Blutdruckmessungen am <u>Handgelenk</u> sind ungenauer als Oberarm-Messgeräte. Blutdruckmessgeräte für den Finger sind ungeeignet.

Die mit dem Prüfsiegel der Deutschen Hochdruckliga e.V. ausgezeichneten Geräte finden sich unter: www.hochdruckliga.de/messgeraete-mit-pruefsiegel.html

Regeln zur Blutdruckmessung:

- Blutdruckmessung im Liegen oder Sitzen (möglichst 3 5 Min. vorher Ruhe): Den zur Messung benutzten Arm in <u>Herzhöhe</u> lagern bei leichter Beugung im Ellbogen (bei durchgestrecktem Arm sind die Messwerte um ca. 10 % höher).
- Blutdruckmanschette anlegen, Unterrand 2,5 cm über der Ellenbeuge
- Mikrofon an der Innenseite des Oberarms über der Schlagader platzieren
- Manschette bis 30 mmHg über den systolischen Blutdruck aufpumpen
- Manschettendruck langsam um 2 mmHg pro Sekunde ablassen
- Der systolische Druck wird beim ersten hörbaren Korotkoff-Geräusch abgelesen, der diastolische Druck beim Verschwinden des Geräusches. Bei sofort hörbaren Geräuschen wird die Luft ganz abgelassen und nach 1 2 Min. neu aufgepumpt auf höhere Druckwerte (nicht sofort nachpumpen!).
- Mind. einmal an beiden Armen messen; Messung mind. 1 x wiederholen
- Bei erhöhten Blutdruckwerten stets auch den <u>Femoralispuls</u> kontrollieren und bei abgeschwächten Pulsen den Blutdruck am Oberschenkel messen, wo die Werte höher sein müssen als am Arm (30 40 mmHg Unterschied). Hypotonie an den Beinen bei Hypertonie an den Armen findet sich bei Aortenisthmusstenose.
- Zur <u>Erfassung einer orthostatischen Hypotonie</u>, z.B. im Rahmen einer autonomen Neuropathie oder unter medikamentöser Therapie, erfolgt eine <u>Messung des Blutdrucks nach dem Aufstehen</u> aus liegender Position (sofort und nach zwei Min.).
- Wenn man mit der üblichen Blutdruckmanschette misst, stimmt der Messwert nur bei normalen Oberarmumfängen (ca. 24 32 cm). <u>Bei wesentlich dickeren Oberarmen ist der Wert ca. 10 mmHg zu hoch</u> und bei sehr dünnen Oberarmen ist der Wert zu niedrig, sofern man keine angepasste Manschette benutzt: Oberarmumfang 24 32 cm → Manschette 13 x 24 cm; Oberarmumfang 33 41 cm → Manschette 15 x 30 cm.
- Bei erhöhtem HZV bzw. Hyperzirkulation können die Korotkoff-Töne bis 0 mmHg hörbar sein (z.B. Schwangerschaft, Fieber, Anämie). In diesen Fällen liest man den diastolischen Wert ab beim Leiserwerden der Korotkoff-Geräusche.

<u>Beachte:</u> Bei Hypertonie Gefahr der Fehlmessung durch <u>sog. auskultatorische Lücke:</u> Verschwinden der Korotkoff-Töne unterhalb des systolischen Blutdruckwertes: Ursache von fälschlich zu niedrig gemessenen RR-Werten! Daher Blutdruckmanschette immer hoch genug aufblasen und Kontrolle des Auskultationsbefundes durch gleichzeitige Radialispalpation!

Falsch erhöhte Werte misst man bei der Mönckeberg-Mediasklerose = M. Mönckeberg:

Ablagerung von Hydroxylapatit-Kristallen in der Media von Arterien vom muskulären Typ; Folge: Verminderte Kompressibilität der Arterien, besonders der Beine → Knöchel-Arm-Index bei der Diagnostik einer PAVK nicht verwertbar.

1. Primär - 2. Sekundär bei Diabetes mellitus

<u>Di.:</u> Röntgen: Skelettartige feingranulierte Gefäßverschattung, spangenartige Verkalkungen im CT, echogene Stufen in der Duplexsonografie

Blutdruckdifferenzen zwischen beiden Armen > 20/15 mmHg (syst./diast.) liegen außerhalb des Referenzbereiches und müssen abgeklärt werden. Patienten haben ein erhöhtes kardiovaskuläres Risiko.

Vorkommen:

- 1. Aortenbogensyndrom durch Arteriosklerose, selten Vaskulitis (Takayasu-Arteriitis, siehe dort)
- 2. Stenose/Verschluss der A. subclavia (z.B. durch Halsrippe oder Schlüsselbeinexostose)
- 3. Aortenisthmusstenose mit Abgang der A. subclavia sinistra distal der Stenose
- 4. Aortendissektion
- 5. In der Mehrzahl d.F. findet sich jedoch keine Ursache.

Voraussetzung für die Diagnose und Beurteilung des Schweregrades der Hypertonie sind 2 Pra-Di.: xis-Blutdruckmessungen pro Vorstellung bei mindestens 2 Untersuchungen. Ergänzende Praxisunabhängige RR-Messungen sind unverzichtbar. Hierbei handelt es sich um Blutdruckmessung im häuslichen Umfeld sowie die ambulante Blutdruck-Langzeitmessung (ABDM), die bei allen Patienten mit arterieller Hypertonie zur Einschätzung des individuellen Risikos durchgeführt werden sollte.

Regel für die Praxismessung: RR-Registrierung im Sitzen nach 5 Min. Ruhe. Es sollten dann 3 Messungen im Abstand von 1 - 2 Min. durchgeführt werden. Es wird dann der Mittelwert aus den beiden letzten Messungen gebildet. Bei Patienten mit Vorhofflimmern Mittelwertbildung von 3 Messungen.

Merke: Das Nichtbeachten einfacher Regeln der Blutdruckmessung (z.B. nur eine Messung ohne Ruhebedingungen) ist eine der Hauptursachen für eine unzureichende Blutdruckkontrolle und Fehldiagnosen.

Eine Hypertonie liegt vor:

Praxismessung ≥ 140 / 90 mmHg

Selbstmessung ≥ 135/85 mmHg 24 h-Messung (ABDM) Tagesmittelwert:

≥ 135/85 mmHg

Vorteile bei häuslicher Blutdruckselbstmessung:

- Aufdeckung einer Praxishypertonie (bei normalen Werten zu Hause)
- Bessere Reproduzierbarkeit der Messwerte
- Bessere Therapieüberwachung und Therapietreue

- Erfassung von Therapieeffekten bei der Einstellung und der Langzeittherapie

Eine Blutdruckselbstmessung durch den Patienten. sollte vermieden werden, wenn sie zu Angstgefühlen führt oder zu "Bedarfs"behandlung des Patienten führt, abweichend von ärztlichen Empfehlungen.

<u>Vorteile bei 24-Stunden-Blutdruckmessung</u> (ABDM = <u>a</u>mbulante <u>B</u>lut<u>d</u>ruck<u>m</u>essung): - Aufdeckung einer Praxishypertonie ("Weißkittel"-Effekt)

- Aufdeckung eines gestörten Tag-/Nachtrhythmus
- Screening auf sekundare Hypertonie (Verdacht auf sekundare Hypertonie bei Non-Dippern)
- Bessere Einschätzung des kardiovaskulären Risikos
- Optimierung der Therapieüberwachung (Vermeidung von Über- und Untertherapie)
- Aufdeckung einer Schwangerschafts-induzierten Hypertonie bei erhöhten Praxismessungen.

Normalwerte bei ABDM:

- Tagesmittelwert: ≤ 135/85 mmHg
- Nachtmittelwert: ≤ 120/70 mmHg
- 24-Stundenmittel: ≤ 130/80 mmHg

• Normale Nachtabsenkung ("Normal Dipper")
Nächtliche Blutdruckabsenkung > 10 % und < 20 % des Tagesmittelwertes der ABDM

• Verminderte nächtliche Blutdruckabsenkung ("Non-Dipper"):

Nächtliche Blutdruckabsenkung > 0 % und < 10 % des Tagesmittelwertes der ABDM

Inversion des Tag/Nacht-Rhythmus ("Inverted Dipper" oder "Reversed Dipper"):

Nächtliche Blutdruckabsenkung < 0 % des Tagesmittelwertes bzw. nächtlicher Blutdruckanstieg mit einer Inversion des Tag/Nacht-Rhythmus.

Die wichtigsten Ursachen für fehlende Nachtabsenkung des Blutdruckes sind:

- Sekundäre Hypertonie
- Obstruktives Schlaf-Apnoe-Syndrom
- Diabetes mellitus (Nephropathie)
- Schwangerschaftsinduzierte Hypertonie
- Schlaflose Patienten können auch eine fehlende Nachtabsenkung zeigen.

<u>Merke:</u> Die in der ABDM während des Tages und der Nacht ermittelten Blutdruckwerte sind ein besserer Prädiktor hinsichtlich der Gesamt- und der kardiovaskulären Mortalität als die in der Praxis registrierten Blutdruckwerte, wobei dem systolischen Blutdruck eine größere prädiktive Bedeutung hinsichtlich der Mortalität zukommt als den diastolischen Werten.

Basisprogramm zur Hypertoniediagnostik:

- 1. Anamnese:
 - Dauer und Maxima bekannt erhöhter Blutdruckwerte, bisherige Diagnostik
 - <u>Hypertoniebeschwerden/-komplikationen:</u> Kopfschmerzen, Ohrensausen, Herzklopfen, Belastungsdyspnoe u.a.
 - <u>Medikamentenanamnese:</u> Antihypertonika (NW ?), blutdrucksteigernde Medikamente (z.B. NSAR, Kortikosteroide, Ovulationshemmer, Erythropoetin)
 - Nikotinkonsum, Alkoholkonsum, Kaffeekonsum, Drogen
 - <u>Frühere Erkrankungen</u>, Begleiterkrankungen, <u>Schlafapnoe-Syndrom</u> (Schlafqualität/-dauer; nächtliche Atemstillstände), Insomnie; Restless legs syndrome
 - Familienanamnese: Hypertonie, Herzinfarkt, Schlaganfall, Nierenerkrankungen

2. Untersuchung und Diagnostik:

- <u>Blutdruck an beiden Armen (!)</u>, Pulsstatus (an Armen + Beinen → Aortenisthmusstenose ?), abdominelle Auskultation (evtl. paraumbilikales Geräusch bei Nierenarterienstenose), evtl. Fundoskopie
- <u>Blutdruck-Selbstmessung</u> protokollieren lassen

- ABDM (24 h-Messung)

- <u>Lab:</u> Harnstatus mit Test auf Mikroalbuminurie, Kreatinin i.S., Serumelektrolyte (Kalium ?) Screening auf weitere Risikofaktoren für eine vorzeitige Arteriosklerose (Blutzucker, Cholesterin, HDL-/LDL-Cholesterin, Triglyzeride u.a., siehe Kap. KHK)
- 3. Diagnostik auf sekundäre Hypertonie:

<u>Ind.:</u> Junge Patienten, schwere Hypertonie, die mit einer 3er-Kombination nicht zu normalisieren ist, Non-Dipper/reversed Dipper, Endorganschäden u.a.

- Bei Verdacht auf Nierenerkrankung Nierendiagnostik

- Bei Verdacht auf Phäochromozytom: Katecholaminmetabolite (Metanephrine) im Plasma/ Urin
- Bei Verdacht auf Cushing-Syndrom: Dexamethason-Kurztest (siehe dort)
- Bei Hypokaliämie (die nicht therapiebedingt ist) Ausschluss eines Conn-Syndroms (siehe dort)
- Bei Verdacht auf Nierenarterienstenose: Farbduplexsonografie
- Bei Verdacht auf Schlafapnoe-Syndrom ambulantes Screening und Polysomnografie
- 4. Diagnostik subklinischer Organschäden: z.B.
 - Herz → Ekg, Echo (linksventrikuläre Hypertrophie, diastolische Dysfunktion?)
 - Extrakranielle Arterien → Doppler/Sono (Arteriosklerose? Stenosen?)
 - Bauchaorta, Beinarterien → Pulse, Sono, Knöchel-Arm-Index
 - Nieren → Ausscheidung von Albumin im Urin, Kreatinin(-Clearance)
- 5. Kardiovaskuläres 10-Jahresrisiko ermitteln (Siehe Kap. KHK)
- **Th.:** Bei der Indikationsstellung zur Hochdruckbehandlung spielen 3 Aspekte eine Rolle:
 - Blutdruckhöhe (systolisch, diastolisch, Blutdruckamplitude, nächtliches Blutdruckverhalten)
 - <u>Individuelles KHK-Risiko</u>, z.B. nach PROCAM- oder ESC-Score ermittelt (siehe dort)
 - Hypertensive Organschäden

<u>Wichtigstes Ziel ist die Verminderung des kardiovaskulären Risikos.</u> Durch <u>dauerhafte Absenkung des Blutdrucks</u> auf Normalniveau lassen sich kardiovaskuläre Komplikationen vermindern: Linksherzinsuffizienz (- 50 %), Schlaganfälle (- 40 %), Herzinfarkte (- 25 %), Todesfälle an Herzinfarkt und Schlaganfall (- 20 %).

Empfehlungen der ESH/ESC 2018:

- 1. <u>Für alle Patienten gilt ein Zielblutdruck von < 140/90 mmHg.</u> (Regeln für die antihypertensive Therapie von älteren Patienten: Siehe unten).
- 2. Wenn die Verträglichkeit der antihypertensiven Therapie gut ist, sollte versucht werden, als Blutdruckziel bei <u>Patienten < 65 J. 130/70 80 mmHg anzustreben</u> (jedoch nicht < 120/70 mmHg). Bei Patienten > 65 80 J. ist der Zielblutdruck 130 139/70 80 mmHg. Da eine intensivere RR-Senkung mit mehr Nebenwirkungen einhergeht, regelmäßige klinische und labormedizinische Kontrollen!

Zielblutdruck bei chronischen Nierenerkrankungen (CKD): Siehe dort

- A. Kausale Therapie einer sekundären Hypertonie (siehe Ätiologie)
- B. Symptomatische Therapie

► <u>Allgemeinmaßnahmen = Basistherapie jeder Hypertonie!</u>

- Gewichtsnormalisierung: BMI ca. 25 kg/m², Bauchumfang < 102 cm (m) und < 88 cm (w)
- <u>Salzarme Diät</u> (5 6 g NaCl/d): Keine kochsalzreichen Speisen, Speisen nicht zusätzlich salzen. Keine Salzstreuer benutzen. Bis zu 50 % aller Hypertoniker sind salzempfindlich und profitieren mit Blutdrucksenkung von einer salzarmen Diät. Salzarme Diät vermindert

auch die Hypokaliämiegefahr durch Diuretika. Verwendung von Diätsalz auf der Basis von KCI: Kalium wirkt blutdrucksenkend.

- <u>Mediterrane Kost</u> (viel Obst, Gemüse, Salat; wenig tierisches Fett, fischreiche Ernährung, Nüsse, Verwendung von Olivenöl) vermindert das Herzinfarktrisiko um 50 % und senkt den Blutdruck! Ähnlich ist die sog. <u>DASH-Diät</u> (Dietary approach to stop hypertension → *siehe Internet*).
- <u>Weglassen hypertoniebegünstigender Medikamente</u> (NSAR, Kortikosteroide, Ovulationshemmer, Erythropoetin u.a.) sofern möglich
- Regulierung der Lebensweise: Rauchen einstellen, Kaffeekonsum sparsam, Alkoholkonsum reduzieren (≤ 30 g Alkohol/d für Männer und ≤ 20 g/d für Frauen), Antistress-Training und Entspannungsübungen
- <u>Dynamisches Ausdauertraining</u>, z.B. Walken, Laufen, Schwimmen (3 4 x/Woche über 30 45 Min.) vermindert das Herzinfarktrisiko um 50 % und senkt den Blutdruck um 13/8 mmHg.
- Warme Bäder, milde Saunaanwendung (<u>ohne</u> anschließende Kaltwasser- oder Eisanwendung, die den Blutdruck erhöht).
- <u>Beseitigung bzw. Behandlung anderer kardiovaskulärer Risikofaktoren</u> (z.B. Hypercholesterinämie, Diabetes mellitus).

<u>Merke:</u> Allein durch Ausschöpfung der genannten Allgemeinmaßnahmen lassen sich 25 % der leichten Hypertonien (Schweregrad 1) normalisieren!

Medikamentöse Therapie:

Empfohlen wird eine primäre Zweifach-Kombinationstherapie (möglichst Fixkombination), die die Therapietreue erhöht. Ausnahmen: Patienten mit Grad 1-Hypertonie und niedrigem kardiovaskulärem Risiko und bei Patienten von ≥ 80 Jahren. Empfehlenswerte Fixkombinationen sind ein ACE-Hemmer oder ein ARB in Kombination mit eine Dihydropyridin-Kalziumantagonisten oder einem Thiaziddiuretikum oder Thiazidanalogon.

Merke: Die 5 Medikamente der 1. Wahl sind Thiazide und Thiazidanaloga (Chlortalidon, Indapamid), ACE-Hemmer, Angiotensin-Rezeptorblocker (ARB), langwirksame Kalziumantagonisten und Betablocker. Für die Medikamente der 1. Wahl ist ein prognostischer Vorteil (Senkung der kardiovaskulären Morbidität und Mortalität von Hypertonikern) bewiesen. Hinsichtlich der Betablocker gibt es Leitlinien (z.B. England), die diese Mittel nicht mehr als Antihypertonika der ersten Wahl empfehlen, da Studien (LIFE, ASCOT) eine geringere Senkung zerebrovaskulärer Folgeerkrankungen zeigten. Diese Daten beziehen sich aber nur auf Atenolol. Bei Postinfarktpatienten oder Herzinsuffizienz sind Betablocker aus prognostischer Sicht unverzichtbar.

ACE-Hemmer und Angiotensin-Rezeptorblocker können das Fortschreiten einer diabetischen Nephropathie und nicht-diabetischer Nierenerkrankungen verzögern. Eine Kombination von beiden sollte aber nicht erfolgen.

Auswahl des Antihypertonikums nach Begleiterkrankungen:

Begleiterkrankung (Beispiele)	Günstige (+) /ungünstige (-) Antihypertonika	Erklärung
Herzinsuffizienz	(+) ACE-Hemmer, ARB	Vor- und Nachlastsenkung, Prognose-
	(+) Metoprolol, Bisoprolol, Carvedilol	verbesserung
	(+) Diuretika	Vorlastsenkung
	(–) Verapamil	Negativ inotrope Wirkung
Bradykardie	(–) Betablocker	Negativ chronotrope Wirkung
	(-) Verapamil	
	(-) Clonidin	
Koronare	(+) Kardioselektive Betablocker	Antianginöse Wirkung
Herzkrankheit		Prognoseverbesserung
Zustand nach	(+) Betablocker	Prognoseverbesserung
Herzinfarkt	(+) ACE-Hemmer, ARB	
Lipidstoffwechsel	(-) Betablocker	} Trigylzeride + VLDL ↑
	(-) Thiazide	Trigyizeride + VLDL 1
Metabol. Syndrom	(+) ACE-Hemmer, ARB	Nephroprotektiv; stoffwechselneutral
Diabetes mellitus	(-) Betablocker, Diuretika	Erhöhtes Diabetesrisiko
Gicht	(-) Diuretika	Harnsäureanstieg
Asthma bronchiale	(–) Betablocker	Bronchospastische Nebenwirkung
Niereninsuffizienz	(–) Kaliumsparende Diuretika	Gefahr der Hyperkaliämie (KI!)
	(+) Schleifendiuretika	

Die medikamentöse Therapie ist i.d.R. eine Dauertherapie über Jahre, meist über das gesamte weitere Leben des Patienten gute Kooperation zwischen Arzt und Patient sind Voraussetzung zum Erfolg. Man sollte die Patienten vor Beginn der Behandlung informieren, dass im Anfang Nebenwirkungen (Müdigkeit, Abgeschlagenheit, Antriebsarmut u.a.) - präparateunabhängig - auftreten können, diese aber nach Blutdrucknormalisierung i.d.R. wieder verschwinden. Zur Verlaufskontrolle eignen sich Blutdruckselbstkontrollen sowie ABDM.

Der Blutdruck soll nicht zu rasch/zu stark gesenkt werden (→ Sturzgefahr durch Orthostase),

Antihypertonika nicht abrupt absetzen (Rebound-Gefahr mit Blutdruckanstieg).

Merke: Ziel ist es, den Blutdruck zu normalisieren mit dem nebenwirkungsärmsten Mittel. Die Auswahl richtet sich nach individueller Verträglichkeit, Begleiterkrankungen und evtl. Interaktionen mit anderen Medikamenten, die der Patient einnimmt. Aufgrund des zirkadianen Blutdruckverhaltens mit Höchstwerten am Morgen und Tiefstwerten im Schlaf sollten Antihypertensiva morgens nach dem Wachwerden genommen werden. Der Zeitpunkt der Einnahme der Mittel sollte auch den Tagesrhythmus des Patienten berücksichtigen.

ABDM-Messungen lassen erkennen, ob eine abendliche Dosis eines Antihypertensivums erforderlich ist oder nicht (z.B. bei normalen Druckwerten in der Nacht). Nächtliche Hypotonien müssen vermieden werden, insbesondere bei älteren Patienten! (Gefahr der zerebralen Ischämie und des orthostatischen Kollapses beim Aufstehen mit evtl. Frakturfolgen!)

■ Bevorzugte Zweifach-Kombinationen:

Kombination aus einem ACE-Hemmer oder einem ARB¹) mit einem Dihydropyridin-Kalziumantagonisten²) oder einem Diuretikum³). Ein Betablocker⁴) in Kombination mit einem Diuretikum³) oder eine Substanz aus den anderen Hauptklassen ist eine Alternative, wenn es eine spezifische Indikation für einen Betablocker gibt (siehe oben).

- 1) ARB = Angiotensin-Rezeptorblocker = Angiotensin II-Antagonisten = AT1-Blocker = Sartane
- 2) Nur lang wirkende Kalziumantagonisten
- ³⁾ Als Diuretikum werden HCT, Chlortalidon oder Indapamid eingesetzt, wobei eine Kombination mit Amilorid möglich ist (unter Kontrolle des Serum-Kaliums).
- 4) Betablocker <u>nicht</u> kombinieren mit Kalziumantagonisten vom Non-Dihydropyridin-Typ wie Diltiazem und Verapamil

Eine <u>Kombination von ACE-Hemmern und ARB</u> wird wegen ungünstiger Ergebnisse in der ONTARGET-Studie nicht empfohlen.

Die Kombination Betablocker + Diuretikum zeigt ein erhöhtes Diabetesrisiko.

Unter einer Kombinationstherapie von Diuretika und RAAS-Blockern sollen NSAR wegen des erhöhten Risikos für ein ANV nicht eingesetzt werden.

Dreifach-Kombinationen:

Kommt es nach Austestung verschiedener Zweierkombinationen nicht zu einer Blutdrucknormalisierung, fügt man ein geeignetes 3. Antihypertonikum hinzu. Die beste Kombination scheint hierbei <u>Diuretikum + Kalziumantagonist + ACE-Hemmer (oder ARB)</u> zu sein.

Therapieresistenz (resistente Hypertonie):

<u>Def.:</u> Eine arterielle Hypertonie gilt als therapieresistent (durch ABDM und häusliche Messungen kontrolliert), wenn sie sich durch eine tatsächlich durchgeführte Dreifach-Therapie nicht leitliniengerecht einstellen lässt.

Hypertoniker mit echter Therapieresistenz haben ein um 50 % erhöhtes kardiovaskuläres Risiko. <u>Vo.:</u> Prävalenz ca. 5 % aller Hypertoniker

Off liegt eine <u>Pseudo-Resistenz</u> vor, verursacht durch

Diagnosefehler:

- Unerkannte sekundäre Hypertonie (Diagnostik einleiten)
- Unerkannte Weißkittelhypertonie oder maskierter Hypertonus
- Messfehler (falsche Manschettenbreite, Gerät defekt oder nicht geeignet)
- Unerkannte Veränderung des Hypertonus (engmaschige Kontrolle, Reevaluation)
- Selten maligne Hypertonie (siehe oben)

Therapiefehler:

- Mangelnde Compliance (lange Verschreibungsintervalle, NW, zu viele Tabletten)
- Missachtung von Allgemeinmaßnahmen (siehe oben)
- Medikamenteninteraktionen: Einnahme von Medikamenten, die eine Hypertonie begünstigen (Östrogene, Glukokortikosteroide, NSAR u.a.)
- Substanzmissbrauch (Drogen, andere Medikamente)

Maßnahmen bei echter Resistenz (nach Ausschluss therapierbarer Ursachen):

Überprüfung der bisherigen Antihypertensivakombination und <u>Modifikation des Therapieschemas</u>; <u>Vierfach-Kombination und Einsatz von Mineralokortikoidrezeptor-Antagonisten = Aldosteronantagonisten</u> (Spironolacton, Eplerenon), was sich gut bewährt hat. <u>KI:</u> GFR ≤ 45 ml/Min und/oder Kalium ≥ 4,5 mmol/l.

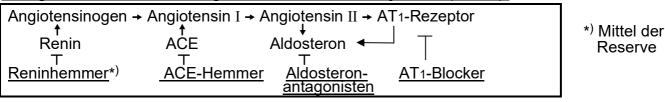
Bei Bedarf wird als 4. Mittel ein Antihypertonikum der Reserve eingesetzt.

<u>Baxdrostat:</u> Ein spezifischer Inhibitor der Aldosteronsynthese, der im Gegensatz zu Spironolacton bei Männern nicht zur Gynäkomastie und bei Frauen nicht zu Menstruationsstörungen führt.

Interventionelle Therapie nur in Zentren im Rahmen von klinischen Studien:

- Renale Sympathikusdenervierung (RSD)

- <u>Barorezeptorstimulation des Karotissinusknotens</u> (Baroreflex-Aktivierungstherapie [BAT]) ist eine experimentelle Therapie zur Blutdrucksenkung im Rahmen von Studien.


Antihypertonika der 1. Wahl (mit gesichertem prognostischen Nutzen):

<u>Diuretika:</u> Thiazide (HCT) und <u>Thiazidanaloga</u> (Chlorthalidon, Indapamid und Xipamid) als Antihypertonika <u>niedrig dosiert</u> (z.B. HCT 12,5 mg, Chlortalidon 25 mg, Indapamid 1,25 mg) <u>Wirkung:</u> Senkung des peripheren Gefäßwiderstandes. Es besteht eine erhöhte Assoziation von Thiaziden mit <u>Hauttumoren</u>, daher Schutz von ultravioletter Strahlung und Hautscreening. Diuretika werden oft als <u>Kombinationspartner</u> mit anderen Antihypertensiva eingesetzt. Thiazide wirken ungünstig bei Diabetes mellitus.

<u>Beachte:</u> Vorsicht bei der Kombination von HCT und Schleifendiuretikum. Hierbei kommt es durch eine sequenzielle Nephronblockade zu einer starken Natriurese!

■ <u>Betablocker:</u> Die ESC-Leitlinien zählen Betablocker weiterhin zu den 5 Antihypertonika der ersten Wahl (die englischen und US-Leitlinien tun das nicht mehr). Bei Postinfarktpatienten oder Herzinsuffizienz sind Betablocker aus prognostischer Sicht unverzichtbar. Bevorzugt für die antihypertensive Therapie werden <u>Beta₁-selektive Betablocker ohne sympathomimetische Eigenwirkung</u> (Einzelheiten: Siehe Kap. Antiarrhythmika).

Antagonisten des Renin-Angiotensin-Aldosteron-Systems (RAAS):

Eine Kombination von ACE-Hemmern und ARB sollte unterbleiben (ungünstige Studienergebnisse).

■ ACE-Hemmer (Prilate):

<u>Wi.:</u> Blockierung des <u>Angiotensin-C</u>onverting-<u>E</u>nzyme, das Angiotensin I in das vasokonstringierende Angiotensin II umwandelt → <u>Folgen:</u>

- Senkung des peripheren Gefäßwiderstandes durch verminderte Angiotensin-II-Produktion

- Verminderung der durch Angiotensin II induzierten Stimulation des sympathikoadrenergen Systems bzw. der Katecholaminfreisetzung
- Drosselung der Aldosteron- und ÄDH-Sekretion und damit Verminderung der Natrium- und Wasserretention mit nachfolgender Volumenabnahme

Hemmung des Abbaus des Vasodilatators Bradykinin (→ synergistische Wirkung)

- Hemmung der aldosteroninduzierten Myokardfibrose, Hemmung des Gefäßremodellings (über Bradykinin)
- Prognoseverbesserung bei Patienten mit Herzinsuffizienz
- Senkung der kardiovaskulären Mortalität bei kardiovaskulären Risikopatienten
- Verzögerung des Fortschreitens einer diabetischen Nephropathie

Die kardioprotektive Wirkung wird durch gewebsständige Wirkungen der ACE-Hemmer u.a. im Herz und in den Blutgefäßen erklärt (Gewebe-Renin-Angiotensin-System). Die Mehrzahl der ACE-Hemmer sind Prodrugs, die erst in der Leber zu biologisch aktiven "Prilaten" hydrolysiert werden. Captopril und Lisinopril sind aktive Wirksubstanzen. ACE-Hemmer verursachen keine negativen Veränderungen des Lipid- und Glukosestoffwechsels.

<u>WW:</u> Hyperkaliämie bei Kombination von ACE-Hemmern mit kaliumsparenden Diuretika, Kaliumpräparaten, Ciclosporin oder Cotrimoxazol. Evtl. Wirkungsverminderung der ACE-Hemmer durch NSAR. Bei gleichzeitiger Lithiumtherapie kann der Serumlithiumspiegel steigen. Bei gleichzeitiger Gabe von Allopurinol ist das Leukopenierisiko erhöht. Bei Diabetikern und gleichzeitiger Therapie mit Insulin oder oralen Antidiabetika wurden Hypoglykämien beobachtet (→ evtl. Dosis reduzieren).

NW: Reizhusten ist rel. häufig (5 -10 %), wird durch Bradykinin vermittelt und verursacht Therapie-abbrüche; Kopfschmerzen, Schwindel, gastrointestinale Störungen; Hyperkaliämie (nicht mit kaliumretinierenden Diuretika kombinieren). Andere NW sind selten: Störungen des Geschmacksinns,

Proteinurie, Nieren-/Leberfunktionsstörungen, Cholestase, Exantheme, Leukopenien, Agranulozytose, Angioödem (<u>Th.:</u> Icatibant - siehe dort), Vaskulitis, allergische Lungenveränderungen, Myalgien, erhöhtes Hypoglykämierisiko bei Diabetikern u.a.

Bei Patienten mit stimuliertem Renin-Angiotensin-System (z.B. Herzinsuffizienz, Nierenarterienstenose, Diuretikabehandlung) kann es zu Beginn der Therapie zu bedrohlichem Blutdruckabfall kommen daher mit kleinster Dosis beginnen! Bei Niereninsuffizienz müssen die Dosen reduziert werden. Urin-, Kreatinin- und Blutbildkontrollen sind angezeigt.

Ind.: Arterielle Hypertonie, Zustand nach Herzinfarkt, Herzinsuffizienz

<u>KI:</u> Schwangerschaft (Risiko der ACE-Hemmer-Fetopathie), Stillzeit, beidseitige Nierenarterienstenose oder Nierenarterienstenose bei Einzelniere, Transplantatniere, gleichzeitige Therapie mit kaliumsparenden Diuretika, Hyperkaliämie, gleichzeitige immunsuppressive Therapie, Unverträglichkeitsreaktionen (Husten, Angioödem), Leberinsuffizienz, schwere Niereninsuffizienz (Kreatininclearance < 30 ml/min), Aorten- und Mitralstenose, obstruktive hypertrophische Kardiomyopathie, Hyposensibilisierungsbehandlung u.a.

Freiname	Handelsnamen z.B.	Wirkungsdauer bei einmaliger Gabe (h)	mittlere Tagesdosis (mg)
Captopril	Generika	bis 12	12,5 - 50
Cilazapril	Dynorm®	bis 18	2,5 - 5
Enalapril	Generika	bis 18	5 - 20
Benażepril	Generika	bis 24	5 - 20
Fosinopril	Generika	bis 24	5 - 20
Lisinopril	Generika	bis 24	5 - 20
Moexipril	Fempress®	bis 24	3,75 - 15,0
Perindopril	Generika	bis 24	4 - 8
Quinapril	Generika	bis 24	5 - 20
Trandolapril	Udrik®, Tarka®	bis 24	1 - 2
Ramipril	Generika	bis 48	2,5 - 5

■ <u>Angiotensin II-Antagonisten = Angiotensin-Rezeptorblocker (ARB) = AT1-(Rezeptor-)Antagonisten = AT1-Rezeptorblocker = AT1-Blocker = Sartane:</u>

<u>Wi:</u> AT₁-Rezeptorblocker hemmen die Wirkung von Angiotensin II am AT₁-Rezeptor → Blutdrucksenkung und Hemmung des Gefäßremodellings. Studien, die eine Verbesserung der klinischen Endpunkte belegen, liegen vor (z.B. ONTARGET-Studie für Telmisartan)

NW: Selten Kopfschmerzen, Müdigkeit, gastrointestinale NW, Diarrhö (Olmesartan-Enteropathie); Hyperkaliämie (WW siehe ACE-Hemmer), Kreatininerhöhung, Leberfunktionsstörungen. Husten und Angioödem werden im Gegensatz zu ACE-Hemmern nur sehr selten beobachtet (wegen fehlender Wirkung auf den Bradykininabbau); Einzelfälle von Stomatitis, Geschmacksverlust, Parästhesien u.a. KI: Schwangerschaft (Risiko der Sartan-Fetopathie), Stillzeit, beidseitige Nierenarterienstenose, primärer Hyperaldosteronismus, Aorten- und Mitralklappenstenose, Hyperkaliämie, Leberinsuffizienz, Cholestase u.a.

Ind.: 1. Arterielle Hypertonie

- 2. Herzinsuffizienz (Losartan, Valsartan, Candesartan) bei Unverträglichkeit oder KI von ACE-Hemmern
- 3. Nach Herzinfarkt bei Unverträglichkeit/KI von ACE-Hemmern

Freiname	Handelsname z.B.	Mittlere Tagesdosis (mg)	
Azilsartan	Edarbi [®]	40 - 80	
Candesartan	Generika	4 - 32	
Eprosartan	Generika	600	
Irbesartan	Generika	75 - 300	
Losartan	Generika	50 - 100	
Olmesartan	Generika	10 - 40	
Telmisartan	Generika	40 - 80	
Valsartan	Generika	80 - 320	

Bei der <u>Therapie der Herzinsuffizienz</u> oder nach Herzinfarkt wird mit der kleinsten Dosis begonnen und in Abhängigkeit von der Verträglichkeit langsam höher dosiert; das gilt auch für ACE-Hemmer und Betablocker.

■ Kalziumantagonisten (KA):

<u>Wi.:</u> Die im Handel befindlichen <u>L-Kanal-Antagonisten</u> blockieren die L-(long lasting)Kalziumkanäle an den Gefäßen → arterielle Vasodilatation (Nachlastsenkung)

KA vom Non-Dihydropyridin-Typ (Verapamil, Diltiazem, Gallopamil)
 Sie wirken an Gefäßen und Herz! Am Herzen wirken sie negativ ino-, chrono-, dromo- und bathmotrop. Sie zählen zu den Klasse IV-Antiarrhythmika (siehe dort) und dürfen nicht mit Betablockern kombiniert werden (Gefahr von AV-Block u./o. Bradykardie)

2. KA vom Dihydropyridin-(DHP-) = Nifedipin-Typ:

Dihydropyridine sind gefäßselektiv; die Senkung des peripheren Widerstands kann zu einer Reflextachykardie führen und pektanginöse Beschwerden provozieren! <u>Sie dürfen mit Betablockern kombiniert werden, wodurch die Reflextachykardie vermieden werden kann.</u>

Freiname	Handelsname, z. B.	Mittlere Tagesdosis (mg)
Amlodipin	Generika	1 x 5
Felodipin	Generika	1 x 5
Isradipin	Vascal®	1 x 5
Lercanidipin	Generika	1 x 10
Manidipin	Manyper®	1 x 10
Nifedipin	Generika	2 x 20
Nilvadipin	Nivadil®, Escor®	1 x 8
Nisoldipin	Baymycard®	1 x 10
Nitrendipin	Generika	1 x 20

<u>Beachte:</u> Kurzwirksame KA zeigen in einigen Studien ungünstige prognostische Wirkung und sind daher zur Therapie der KHK und Hypertonie nicht indiziert; bei instabiler Angina pectoris und akutem Herzinfarkt sind sie sogar kontraindiziert. Indikationen für kurzwirksame KA sind supraventrikuläre Tachykardie (Verapamil) und Prinzmetalangina (Koronarspasmus). - Für die antihypertensive Therapie sollten nur lang wirksame Kalziumantagonisten eingesetzt werden.

<u>NW:</u> <u>Flush, Kopfschmerzen,</u> Schwindel, Müdigkeit, allergische Reaktionen, Parästhesien, <u>Knöchelödeme</u> (durch periphere Vasodilatation), selten Blutbildveränderungen u.a.

<u>KI:</u> Herzinsuffizienz (NYHA III und IV), instabile Angina pectoris und akuter Herzinfarkt, Schwangerschaft, Stillzeit u.a.

<u>Zusätzliche KI für KA vom Non-Dihydropyridin-Typ:</u> Kranker Sinusknoten, AV-Block > I°, Brady-kardie; gleichzeitige Therapie mit Betablockern, Vorhofflimmern bei WPW-Syndrom u.a.

<u>WW:</u> Erhöhung des Digoxin-Plasmaspiegels → evtl. Dosisreduktion von Digoxin und Konzentrationsbestimmung im Plasma.

Eine Kombination von Betablockern und Verapamil/Diltiazem ist rel. kontraindiziert wegen Summation der negativ chronotropen und <u>dromo</u>tropen Wirkung (Gefahr des AV-Blockes, insbesondere bei vorgeschädigtem Reizleitungssystem und der Bradykardie).

Antihypertonika der Reserve (ohne gesicherten prognostischen Nutzen):

- Alpha1-(Rezeptoren)Blocker: Doxazosin, Bunazosin, Prazosin, Terazosin, Urapidil Nachdem Doxazosin in der ALLHAT-Studie hinsichtlich der Entwicklung einer Herzinsuffizienz ungünstiger abgeschnitten hat als das Diuretikum Chlortalidon, sollten Alpha1-Blocker nicht zur Monotherapie der Hypertonie verwendet werden.
- 2. Zentral wirkende Sympathikolytika (Antisympathotonika):
 - Alpha2-(Rezeptor-)Agonisten: Clonidin

<u>Wi.:</u> Stimulation der Alpha2-Adrenorezeptoren (und evtl. Imidazol-Rezeptoren des Hirnstamms) → Zentral postsynaptisch: Sympathikussenkung; peripher präsynaptisch: Verminderte Noradrenalin-Freisetzung über gesteigertes, negatives Feedback. RR ↓, HF ↓, HZV ↓

<u>NW:</u> Sedierung, Mundtrockenheit, Orthostasereaktion, Obstipation, Bradykardie, Schlafstörungen, evtl. Albträume, Potenzstörungen, depressive Verstimmung.

<u>Merke:</u> Plötzliches Absetzen kann Blutdruckkrisen auslösen! Zu hohe Dosierungen können über periphere Alpha₁-Rezeptoren den Blutdruck steigern!

Ind: Clonidin bei hypertensiver Krise/Notfall

<u>KI:</u> Sick-Sinus-Syndrom, Bradykardie, AV-Block > I°, Depressionen, Leber- oder Niereninsuffizienz, Schwangerschaft u.a.

Dos: 0,15 - 0,9 mg/d

- <u>Moxonidin:</u> Soll eine erhöhte Affinität zu Imidazolinrezeptoren der Medulla oblongata besitzen. Da es keinen Einfluss auf das RAAS hat, kann bei stationärer Hypertonieabklärung eine passagere Moxonidin-Einstellung sinnvoll sein.
- Methyldopa

<u>Wi.:</u> α-Methyldopa wird metabolisiert zu α-Methylnoradrenalin; dieser "falsche Neurotransmitter" stimuliert im ZNS zentrale α2-Rezeptoren und dadurch die Empfindlichkeit des Barorezeptorenreflexes \rightarrow reflektorische Sympathikolyse.

<u>NW:</u> Allergien, Coombs-positive autoimmunhämolytische Anämie, medikamentös induzierter Lupus, Sedierung, Mundtrockenheit, Natrium- und Wasserretention, Orthostasereaktion, Leberschäden, Potenzstörungen, Gynäkomastie, psychische Störungen u.a.

Unter Einnahme von Methyldopa kommt es zu falsch positiven Werten der Katecholamine im Urin!

Ind: Nur noch Schwangerschaftshypertonie

KI: Lebererkrankungen, Niereninsuffizienz, Depressionen

Dos: 2 - 3 x täglich 250 mg oral; Methyldopa nicht abrupt absetzen (Gefahr der Blutdruckkrise); Dosisreduktion bei Niereninsuffizienz, Kontrolle von Blutbild, Coombs-Test, evtl. Anti-Histon-Ak

3. Arterioläre Vasodilatatoren:

<u>Wi.:</u>Arterioläre Vasodilatation durch direkte Wirkung an der glatten Gefäßmuskulatur. <u>Ind.:</u> Therapierefraktäre Hypertonien, Dihydralazin auch bei Schwangerschaftshypertonie

- <u>Dihydralazin</u> (Nepresol®)

<u>NW:</u> Reflektorische Tachykardie mit evtl. Auslösung einer Angina pectoris → mit Betablockern kombinieren; Orthostase, Kopfschmerzen, gastrointestinale NW; die Häufigkeit eines medikamentös induzierten Lupus ist dosisabhängig (keine Tagesdosen > 100 mg!). Langsamazetylierer sind besonders gefährdet. Gesteigerte Na⁺- und H₂O-Retention: Kombination mit Diuretikum. KI: z.B. koronare Herzkrankheit

- Minoxidil (Lonolox®): Stärkster peripherer Vasodilatator

<u>NW:</u> Reflektorische Tachykardie, Natrium- und Wasserretention → daher immer Kombination mit Diuretikum und Betablocker, häufig Hypertrichose (störende NW bei Frauen) u.a.

<u>KI:</u> z.B. koronare Herzkrankheit, Herzinsuffizienz, rel. kontraindiziert bei Frauen wegen Hypertrichose

4. Reninhemmer (Renininhibitoren): Aliskiren (Rasilez®)

<u>Wi.:</u> Durch Hemmung des Enzyms Renin wird die Umwandlung von Angiotensinogen in Angiotensin I gehemmt. Die Spiegel von Angiotensin II und Aldosteron sinken. Wirkdauer bis 24 h. Prognostischer Nutzen nicht bewiesen.

NW: Oft Diarrhö, gel. Hautausschlag, selten Angioödem, periphere Ödeme, Kaliumanstieg u.a.

<u>KI:</u> Gleichzeitige Therapie mit ACE-Hemmern oder ARB zeigte ungünstige Resultate (ALTITUDE-Studie bei Typ 2-Diabetikern)

Dos: Mittlere Tagesdosis 150 - 300 mg

Regeln für die antihypertensive Therapie älterer Patienten (> 80 J.):

- Auch bei Patienten > 80 J. ist eine Hypertonietherapie indiziert und führt zu einer Reduktion der Gesamtmortalität sowie der Komplikationen durch Herzinsuffizienz und <u>Schlaganfall</u>. Ein RR > 160 mmHg systolisch sollte behandelt werden.
- Vorsichtige langsame Blutdrucksenkung. Zielwert auch 130 139/70 79 mmHg, wenn keine Komorbiditäten vorliegen.
- Verzicht auf Normalisierung des Blutdrucks, wenn anhaltende Störungen des Allgemeinbefindens oder Nebenwirkungen der medikamentösen Therapie, insbesondere Orthostase mit Sturzrisiko, auftreten. Bei > 80jährigen Hypertonikern mit reduziertem Allgemeinzustand führt eine straffe Blutdruckeinstellung zur Verschlechterung der Prognose mit erhöhter Mortalität!

- Wahl des Antihypertensivums unter Berücksichtigung von Begleiterkrankungen.

- Vermeidung von Schleifendiuretika und Alphablockern wegen potenzieller Sturzgefahr

- Behandlungsbeginn mit niedrigen Dosen und einfachem Therapieschema (Compliance!)

- Regelmäßige <u>Blutdruckkontrollen</u>, <u>auch im Stehen</u> (1 und 3 Minuten nach dem Aufstehen aus liegender Position). Ein orthostatischer Blutdruckabfall mit Symptomen ist zu vermeiden (Gefahr von orthostatischem Kollaps, Sturz und Fraktur).
- Regelmäßige Kontrolluntersuchungen mit Frage nach subjektiven Nebenwirkungen und Kontrolle wichtiger Laborparameter (z.B. Kalium, Kreatinin, Blutzucker u.a.)
- Nutzung von Blutdruck-Selbstmessungen (mit Protokollen) und ABDM

Therapie der arteriellen Hypertonie in der Schwangerschaft:

Enge Kooperation zwischen Gynäkologen und Internisten/Hypertensiologen

 Tägliche Selbstmessung des Blutdrucks morgens + abends (oft auch nächtliche Hypertonie!), körperliche Schonung + Kontrollen von Körpergewicht, Urinbefund, Nierenbefund, Leberenzymen, Thrombozyten

Aufgrund Daten der CHAP-Studie (2022) RR > 140/90 mmHg behandeln.

Bei schwerer Hypertonie (RR ≥160/≥110 mmHg Klinikeinwiesung und medikamentöse Therapie

Antihypertensiva in der Schwangerschaft:

- <u>Empfohlene Mittel:</u> Alpha-Methyldopa, Kalziumantagonisten vom Dihydropyridin-Typ (Nifedipin ret., Amlodipin), Hydralazin und eingeschränkt β1-selektive Betablocker (Metoprolol)

- Dihydralazin ist wegen der Nebenwirkungen nicht mehr bevorzugtes Mittel.

- Kontraindiziert: ACE-Hemmer und AT1-Blocker
- Therapie des hypertensiven Notfalls mit generalisierten Krämpfen:
 - Magnesiumsulfat initial 4 6 g (in 50 ml) in 15 20 Min. i.v.
 - Uradipil initial 6,25 mg langsam i.v. (2 Min)
 - Labetalol ist in Deutschland nicht zugelassen (siehe Herstellerangaben)

<u>Merke:</u> Die einzige mögliche kausale Therapie der Präeklampsie ist die frühestmögliche Beendigung der Schwangerschaft; bei HELLP-Syndrom sofortiger Schwangerschaftsabbruch! Die konservative stationäre Therapie bis zur Entbindung besteht in parenteraler antihypertensiver + antikonvulsiver Therapie (siehe oben).

Kochsalzrestriktion ist bei Schwangerschaftshypertonie nicht indiziert, da hierdurch (wie auch durch Diuretika) das Plasmavolumen abnimmt und die Uterusdurchblutung ungünstig beeinflusst wird.

Prävention der Eklampsie:

Bei Frauen mit erhöhtem Risiko: <u>ASS</u> 150 mg/d - Beginn 11. bis spätestens 16. SSW. Fortsetzung bis zur 34. - 36. SSW (deutliche Reduktion der Inzidenz und Abnahme der Frühgeburten und der perinatalen Mortalität).

Hypertensive Dringlichkeit und hypertensiver Notfall [110.91]

<u>Hypertensive Dringlichkeit:</u> Akuter Blutdruckanstieg ohne Zeichen einer Endorganschädigung <u>Hypertensiver Notfall:</u> Kritischer Blutdruckanstieg auf > 180/110 mmHg mit vitaler Gefährdung durch Organschäden: Hochdruckenzephalopathie, intrakranielle Blutungen, retinale Blutungen, Papillenödem, akute Linksherzinsuffizienz, Lungenödem, instabile Angina pectoris, Herzinfarkt, Aortendissektion.

Blutdruckmessung an beiden Armen, engmaschige Kontrolle! In ca. 80 % ist die Hypertonie vorbekannt.

- Th.: Bei <u>hypertensiver Dringlichkeit</u> reicht es, den Blutdruck nach 30 Min. Ruhe zu kontrollieren und innerhalb von 24 h durch orale Gabe von Antihypertensiva zu senken. Der Blutdruck darf nicht massiv und abrupt gesenkt werden, insbes. bei Patienten mit kardialen oder zerebrovaskulären Erkrankungen. Bei ischämischen Schlaganfall ist der Blutdruck in 50 % d.F. reaktiv erhöht und normalisiert sich bei 2/3 der Patienten innerhalb von 24 48 h. Eine Indikation zur vorsichtigen Blutdrucksenkung besteht nur bei wiederholten Blutdruckwerten > 220/120 mmHg. Stets schonende RR-Senkung, nicht mehr als ca. 25 % gegenüber dem Ausgangswert!
 - Bei einem <u>hypertensiven Notfall mit vitaler Bedrohung muss die Therapie sofort beginnen</u>, Einleitung durch den Notarzt und unverzügliche Klinikeinweisung mit Notarztbegleitung!
 Senkung des Blutdrucks um maximal 30 % innerhalb der ersten Stunde!
 Ausnahmen: Akute Linksherzinsuffizienz (dann innerhalb 15 Min. < 140/90 mmHg) oder Aortendissektion (< 120 mmHg systolisch anstreben); intrazerebrale Blutung (< 140 mmHg systolisch innerhalb 1 h).
 Oberstes Gebot: Primum nihil nocere! (Dem Patienten keinen Schaden zufügen!)
 - 1. Ambulante Erstbehandlung (Therapiealternativen mit Wirkungseintritt nach ca. 10 Min.):
 - <u>Nitroglyzerin</u> (Glyceroltrinitrat): z.B. Nitrolingual® als Spray
 Mittel der 1. Wahl bei Angina pectoris, Linksherzinsuffizienz, Lungenödem
 <u>Dos:</u> 2 3 Hübe je 0,4 mg
 - Nifedipin peroral initial 10 mg, Wiederholung nach 30 60 Min. (KI: Akutes Koronarsyndrom und Herzinfarkt)
 - <u>Urapidil</u>: <u>Dos:</u> 12,5 25 mg langsam i.v.
 - Metoprolol: Dos: 5 mg i.v.
 - <u>Zusätzlich:</u> <u>Bei Zeichen der Überwässerung Gabe von Furosemid</u> (20 40 mg i.v.). Bei Linksherzinsuffizienz sitzende Lagerung des Patienten u.a.
 - 2. Stationäre Therapie auf Intensivstation:
 - Fortsetzung der ambulant begonnenen parenteralen Therapie (Nitroglyzerin, Nifedipin, Metoprolol, Urapidil u.a.) unter engmaschiger Blutdruckkontrolle; dabei wird die Infusionsgeschwindigkeit auf hochnormale bis leicht erhöhte Blutdruckwerte titriert. Dos: z.B. Nitroglyzerin 1 5 mg/h und mehr.
 - Zusätzliche Gabe von 20 40 mg Furosemid i.v., sofern keine KI vorliegen (z.B. Dehydratation)
 - <u>Bei hypertensiver Krise infolge terminaler Niereninsuffizienz:</u> Höhere Furosemiddosen, Hämodialyse

RENOVASKULÄRE HYPERTONIE [115.00]

<u>Def:</u> Eine <u>renovaskuläre Hypertonie</u> wird durch eine Störung der arteriellen Perfusion einer oder beider Nieren verursacht. In der überwiegenden Zahl der Fälle liegt eine ein- oder beidseitige signifikante Nierenarterienstenose (NAST) vor (Stenosegrad > 60 %).

Eine <u>ischämische Nephropathie</u> entsteht, wenn die arterielle Minderperfuson zu einer progredienten

Eine <u>ischämische Nephropathie</u> entsteht, wenn die arterielle Minderperfuson zu einer progredienter Niereninsuffizienz mit renaler Fibrosierung führt.

Vo.: 1 % aller Hypertonien; bei Patienten mit Hypertonie > 65 J. beträgt die Prävalenz ca. 7 %.

Ät.: 1. Arteriosklerotische Nierenarterienstenose (ANAST) (80 %): m > w; höheres Alter

2. Renale fibromuskuläre Stenose (20 %): w > m; jüngeres Alter; in 60 % bilateral

3. Selten andere Ursachen: z.B. Aneurysma der A. renalis; Arteriitis (z.B. Panarteriitis nodosa, Takayasu-Arteriitis)

Pg.: Bei einseitiger NAST wird das RAAS aktiviert und führt zu einer peripheren Vasokonstriktion sowie Wasser- und Salzretention mit Blutdruckanstieg. Allerdings kann die kontralaterale und nicht stenosierte gesunde Niere den Blutdruck kompensieren, der somit nur temporär vorhanden ist. Bei bilateraler NAST findet diese Kompensation nicht statt und der Blutdruck bleibt konstant erhöht (Goldblatt-Effekt). Bei Patienten mit beidseitiger NAST findet sich nicht selten ein rezidivierendes Lungenödem ("flash pulmonary edema").

KL.: Als klinische Kriterien, die auf eine Nierenarterienstenose hindeuten, gelten:

- Schwer einzustellende Hypertonie trotz Einsatz von ≥ 3 verschiedener Antihypertensivaklassen; fehlende nächtliche Blutdrucksenkung
- Hypertonie bei gesicherter Atherosklerose (KHK, AVK oder zerebrovaskuläre Erkrankung)

3. Hypertonie mit epigastrischem <u>Strömungsgeräusch</u>, paraumbilikal oder an den Flanken

- 4. Plötzlich auftretendes Lungenödem im Rahmen einer <u>hypertensiven Krise</u> ("flash pulmonary edema") oder wiederholte Phasen von <u>akuter Herzinsuffizienz</u>
- 5. <u>Plötzlicher Beginn einer Hypertonie insbesondere vor dem 25.</u> oder nach dem 50. Lebensjahr
- 6. Verschlechterung der Nierenfunktion (Kreatininanstieg > 30 50 %) nach Beginn einer Therapie mit einem ACE-Hemmer oder einem Angiotensin II-Rezeptorblocker
- 7. Hypertonie und Nierenschrumpfung oder Größendifferenz der Nieren > 1,5 cm
- <u>Di.:</u> 1. <u>Screeningverfahren</u>, die nur bei Vorhandensein der o.g. klinischen Kriterien zur Anwendung kommen sollten:
 - <u>Farbdopplersonografie (FKDS)</u> (bestes Screeningverfahren, jedoch abhängig von der Erfahrung des Untersuchers). Kriterien einer hämodynamischen Relevanz einer NAST sind eine relative Differenz des intrarenal gemessenen Resistive Index (RI) zwischen stenosierter und nicht-stenosierter Seite (Delta RI), eine verlängerte Akzelarationszeit und eine Tardus-Parvus-Profil.
 - <u>Spiral-CT</u> (Strahlenbelastung und potenziell nephrotoxische Röntgenkontrastmittel: Möglichst nur bei eGFR > 60 ml/Min
 - MR-Angiografie bei Niereninsuffizienz nur mit zyklischen Gadolinium-Präparaten
 - 2. Diagnosesicherung:

Intraarterielle digitale Subtraktionsangiografie (i.a.-DSA) ist Goldstandard: Ermöglicht die Abschätzung einer hämodynamisch relevanten Stenose bei systolischem transstenotischen Druckgradienten > 10 - 15 %, evtl. ergänzend intravaskuläre Sonografie. Die DSA sollte nur bei gleichzeitiger Möglichkeit zur Ballonkatheterdilatation erfolgen und wenn der Patient mit evtl. PTA einverstanden ist!

<u>Th.:</u> <u>Ziel:</u> Normalisierung des Blutdrucks und Vermeidung einer ischämischen Nephropathie. Basis ist eine optimale medikamentöse Blutdrucksenkung (<u>Cave:</u> Verschlechterung der Nierenfunktion unter RAAS-Inhibitoren), ASS, Statine

Perkutane transluminale Angioplastie (PTA) der stenosierten Nierenarterie mit oder ohne Stent Ind.: 1. Fibromuskuläre Stenose: PTA ohne Stent - Erfolgsrate bis 75 %

 Bei ANAST > 70 % ist die PTA-Stent-Therapie meist nicht wirksam und daher nur in Ausnahmesituationen indiziert: Bei therapierefraktärer Hypertonie oder bei rasch progredienter Niereninsuffizienz oder nach hypertoniebedingtem Lungenödem.

<u>Ko.:</u> Intimadissektion, Cholesterinembolien, Restenosierung (> 30 % d.F. bei arteriosklerotischer Stenose), Nierenfunktionsverschlechterung durch Kontrastmittelanwendung

■ Bei den übrigen Fällen mit hohem Alter, hoher Komorbidität, RI-Wert > 0,8 konservative Therapie mit mehreren Antihypertensiva unter Verwendung von ACE-Hemmern oder ARB Ergebnisse nach Angioplastie Blutdrucknormalisierung in ca. 75 % d.F. bei fibromuskulärer Stenose, jedoch nur in ca. 20 % bei arteriosklerotischer Stenose (oft fixierte nephrogene Hypertonie). Die Prognose der ischämischen Nephropathie ist ungünstig: 5-Jahres-Mortalität ca. 50 %.

PHÄOCHROMOZYTOM | [D35.0] (benigne); [C74.1] (maligne)

Ca. 0,1 % aller Hypertonien; Inzidenz: < 1/100.000/Jahr. Medianes Alter bei den sporadischen Vo.: Formen 40 - 50 J., bei den hereditären Formen < 40 J. Bei Screening-Untersuchungen werden auch asymptomatische Phäochromozytome gefunden.

Phäochromozytome sind katecholaminproduzierende neuroendokrine Tumoren des chromaffi-Def: nen Gewebes des Nebennierenmarks oder der extraadrenalen Paraganglien. 2/3 der Phäochromozytome sezernieren Adrenalin + Noradrenalin. Extraadrenal gelegene Tumoren oberhalb des Zwerchfells bilden nur Noradrenalin, maligne Phäochromozytome bilden auch Dopamin.

90 % der adrenalen Tumore sind gutartig; 10 % sind maligne (bei extraadrenalen Tumoren ca. 30 %).

90 % sind einseitig, 10 % sind doppelseitig.

80 % der Phäochromozytome sind im Nebennierenmark lokalisiert, der Rest extraadrenal im Bereich des abdominellen oder thorakalen Grenzstranges (Paragangliom). Bei Kindern sind 1/3 der Tumoren extraadrenal.

40 % der Pat. zeigen eine Keimbahn-Mutation. Phäochromozytome sind in bis zu 25 % d.F.

- 1. Multiple endokrine Neoplasie (MEN), Typ 2 (Mutation des RET-Protoonkogens)
- 2. von-Hippel-Lindau-Syndrom Typ 2 (Mutation im VHL-Gen)
- 3. Neurofibromatose Typ 1 (M. Recklinghausen; Mutation des Neurofibromatose Typ 1-Gens)
- 4. Paragangliom-Syndrome 1 5 (Mutationen in den Succinatdehydrogenase-Genen SDHD, SDHAF2, SDHC, SDHB und SHA)
- 5. Hereditäres Phäochromozytom-Syndrom (Mutationen in den Genen TMEM127 und MAX) Weitere Prädipositionsgene → Internet-Info www.LOVD.nl

KL.:

- Paroxysmale Hypertonie mit Blutdruckkrisen (50 % bei Erwachsenen)
- Persistierende Hypertonie (50 % bei Erwachsenen bei Kindern jedoch 90 %)

Bes. während einer Blutdruckkrise, die manchmal durch Palpation des Abdomens ausgelöst werden kann, klagt der Patient oft (75 %) über Kopfschmerzen, Schwitzen, Herzklopfen, Tremor, innere Unruhe, evtl. Abdominal- oder Flankenschmerzen. Evtl. paradoxer Blutdruckanstieg nach Gabe von Betablockern.

Weitere Befunde:

- Blasse Haut!
- Hyperglykämie und Glukosurie (1/3 d.F.)
- Leukozytose
- Gewichtsverlust (Hypermetabolismus)

Beachte: Gewichtszunahme und Gesichtsröte sprechen gegen ein Phäochromozytom. Bei den nicht paroxysmalen Fällen mit Dauerhypertonie ist die Diagnose schwieriger.

DD:

- Blutdruckkrisen anderer Genese, insbes. bei fortgeschrittener Niereninsuffizienz
- Bei Hyperglykämie Diabetes mellitus
- Hyperthyreose
- Kokain- oder Amphetaminmissbrauch

Di.:

- ▶ <u>Verdächtige Klinik:</u> Hypertonie (-krisen) mit Herzklopfen, Kopfschmerzen, Schweißausbruch, Gesichtsblässe, 24 h-Blutdruckmessung (fehlende Nachtabsenkung)
- ▶ Nachweis einer autonomen Katecholaminüberproduktion:

Eine biochemische Diagnostik sollte bei folgenden Patienten vorgenommen werden:

- Patienten mit neu aufgetretener therapieresistenter Hypertonie
- Patienten mit paradoxer Blutdruckreaktion während Anästhesie oder operativer Eingriffe
- Patienten mit einer hereditären Prädisposition bezüglich eines Phäochromozytoms
- Asymptomatische Patienten mit einem Inzidentalom der Nebennieren
- Patienten mit plötzlichen Panikattacken

Aufgrund der niedrigen Prävalenz des Phäochromozytoms wird ein biochemisches Screening bei asymptomatischen Patienten mit Hypertonie i.d.R. nicht durchgeführt.

Beachte: 2 Wochen vor Labordiagnostik interferierende Medikamente möglichst absetzen (z.B. Sympathomimetika, Alpha-Blocker, Antidepressiva, Clonidin). Diuretika, Kalziumantagonisten, ACE-Hemmer und Sartane brauchen nicht unbedingt abgesetzt zu werden.

Leitlinie der Endocrine Society 2014:

- 1. Bestimmung der <u>freien Plasma-Metanephrine</u> unter strengen Abnahmebedingungen (Legen einer Venüle, mind. 30 Min. Ruhelagerung des Patienten vor Blutabnahme). Ein Phäochromozytom wird wahrscheinlich bei einzelnen Werten > 3fachem der Norm oder gleichzeitig erhöhtem Metanephrin und Normetanephrin.
- 2. Alternativ können auch die <u>fraktionierten Metanephrine im angesäuerten 24 h-Urin</u> bestimmt werden.

- 3. Bei Verdacht auf Phäochromozytom/Paragangliom zusätzliche Bestimmung von 3-Methoxytyramin, Dopamin und Homovanillinsäure im Plasma
- 4. Bestätigungstest:

Ind.: Bei klinischem Verdacht auf Phäochromozytom und nur mäßig erhöhten Katecholaminmetaboliten

Clonidin-Hemmtest (Voraussetzung: systolische Blutdruckwerte > 120 mmHg): Nach Gabe von Clonidin sinkt durch zentrale Hemmung des sympathischen Nervensystems bei gesunden Probanden die Plasmakonzentration der Katecholaminmetaboliten, nicht dagegen bei autonomer Katecholaminsekretion infolge eines Phäochromozytoms.

5. Lokalisationsdiagnostik:

(Endo-)Sonografie

<u>CT oder MRT des Abdomens</u> (Sensitivität ca. 95 % und Spezifität ca. 75 %)
<u>Szintigrafie oder SPECT</u> (Single Photonen-Emissions-CT) mit <u>123Jod-MIBG</u> (Metajodbenzylguanidin) zum Ausschluss oder Nachweis extraadrenaler Phäochromozytome. Bei negativem MIBG-Befund kann bei fortbestehendem Tumorverdacht auch eine Somatostatin-Rezeptor-Szintigrafie durchgeführt werden.

Ein ¹⁸F-DOPA-PET kann zum Einsatz kommen, falls die genannten Verfahren negativ ausfallen, der Tumorverdacht aber weiter besteht, bes. bei ektopen Tumoren.

6. Genetische Beratung und Diagnostik: Alle Patienten mit einem Paragangliom sollten hinsichtlich einer Keimbahnmutation genetisch untersucht und beraten werden. Bei Nachweis einer Mutation empfiehlt sich eine Mutations-spezifische Testung von Verwandten 1. Grades.

Laparoskopische Tumorentfernung (falls das nicht geht: Offene Operation) Th.: Beim unilateralen Phäochromozytom unilaterale Adrenalektomie. Bei MEN-2-Syndrom und bilateralen Tumoren bilaterale subtotale (organerhaltende) Adrenalektomie (zur Vermeidung einer lebenslangen Substitution von Glukokortikoiden).

Folgende Punkte sind zu beachten:

"No touch"-Technik (um Ausschüttung von Katecholaminen zu verhindern)

Präoperative Alphablockade (Phenoxybenzamin); bei Tachyarrhythmie in Kombination mit Betablockern (aber nur nach suffizienter Alphablockade)

Perioperative Volumenauffüllung und natriumreiche Kost (zur Prophylaxe eines postoperativen Blutdrucksturzes)

Postoperativ auf Hypoglykämie achten!

Nachuntersuchungen in den ersten 5 Jahren

Ansonsten konservative Therapie:

Therapie einer hypertonen Krise: Siehe dort

Bei Inoperabilität: Therapie mit Alphablockern (Phenoxybenzamin, Prazosin) oder α-Methyl-p-Tyrosin = MPT (Demser®, in Deutschland nicht zugelassen), das die Tyrosinhydroxylase und somit die Synthese von Katecholaminen hemmt.

<u>Bei metastasierendem Phäochromozytom:</u> Chirurgische Resektion soweit möglich, Therapie mit ¹³¹J-MIBG oder ⁹⁰Y-DOTATE und ¹³⁷Lu-DOTATE, Thermoablation, Chemotherapie und Radiatio. Dadurch Verzögerung des Fortschreitens der Erkrankung.

> 50 % der Patienten mit benignem Phäochromozytom werden nach der Operation normotensiv, Prg: bei den übrigen Fällen liegt zusätzlich eine essenzielle Hypertonie vor. Im Langzeitverlauf zeigen ca. 15 % der Patienten ein Rezidiv; deshalb sind Kontrolluntersuchungen indiziert.

Conn-Syndrom als Ursache einer Hypertonie: Siehe Kap. Endokrinologie / Stichwortverzeichnis

CHRONISCHE ARTERIELLE HYPOTONIE [195.9] **UND ORTHOSTATISCHE HYPOTONIE** [195.1]

• <u>Arterielle Hypotonie:</u> RR < 100 mmHg systolisch. Def: Eine regulative Hypotonie findet sich bei gut trainierten Menschen: Der Kreislauf befindet sich bei ihnen in Ruhe in einer parasympathikotonen Schonstellung.

 Orthostatische Hypotonie (OH): Gestörte Blutdruckregulation: Abfall des systolischen Blutdrucks um mind. 20 mmHg oder des diastolischen Blutdrucks um mind. 10 mmHg im Stehen innerhalb von 3 Min. nach dem Aufstehen im Vergleich zu den Ruhewerten nach 4 Min. Liegen. Ursache ist ein Versacken des venösen Blutes in den Beinen und im Splanchnikusgebiet. Dabei kann es zu Symptomen zerebraler Minderperfusion kommen: Schwindel, Benommenheit, Sehstörungen, Kopfschmerzen, evtl. Synkope. Bei intaktem autonomen Nervensystem kommt es reaktiv zu Sympathikus<u>aktivierung</u> mit Tachykardie, Blässe, kalten Extremitäten, Schweißausbruch, evtl. Übelkeit. <u>Bei Erkrankungen mit Störung des autonomen Nervensystems fehlen diese reaktiven Symptome.</u> Die Ruheblutdruckwerte können dabei hypo-, normo- oder sogar hyperton sein, sodass der <u>Ruheblutdruck für die Diagnose nicht entscheidend</u> ist! Bis zu 50 % der Patienten haben im Liegen hypertone Werte.

<u>Anm.</u>: Die Autoregulation der Hirndurchblutung, die über Tonusveränderungen der kleinen Hirngefäße die Hirndurchblutung im Bereich von 70 - 180 mmHg konstant erhält (Bayliss-Effekt), funktioniert nicht mehr vollständig bei arteriosklerotisch erstarrten Hirngefäßen; hier kann es schon bei plötzlichem Abfall des systolischen Druckes < 120 mmHg zu neurologischen Ausfallerscheinungen mit Sturzgefahr kommen.

Ep.: Orthostatische Hypotonien werden bei älteren Menschen > 65 J. in 25 % beobachtet.

Einteilung und Ätiologie:

A) Arterielle Hypotonie

- 1. <u>Primäre (essenzielle) Hypotonien</u> (häufigste Form):
 Bevorzugt junge Frauen von leptosomalem Habitus, familiäre Häufung wird beobachtet.
 Harmloser Befund, keine Krankheit.
- 2. Sekundäre Hypotonien:
 - <u>Medikamentös induziert:</u> z.B. Psychopharmaka, Antiarrhythmika, Antihypertonika, Diuretika, Koronarmittel, Vasodilatanzien
 - <u>Endokrin bedingt:</u> Hypothyreose, Nebennierenrindeninsuffizienz, HVL-Insuffizienz, Hypoaldosteronismus
 - <u>Kardiovaskulär bedingt:</u> z.B. Aortenklappenstenose, Herzinsuffizienz, Rhythmusstörungen, pulmonale Hypertonie, konstriktive Perikarditis
 - Immobilisation, lange Bettlägerigkeit, nach Infektionskrankheiten
 - Hypovolämie und Hyponatriämie unterschiedlicher Genese

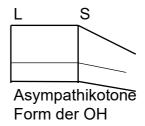
B) Orthostatische Hypotonie

- 1. Im Rahmen einer Hypotonie, insbesondere sekundäre H.
- 2. Varikosis und postthrombotisches Syndrom
- 3. <u>Störungen des autonomen Nervensystems mit asympathikotoner OH</u> (fehlende reaktive Sympathikusaktivierung): z.B.
 - Diabetische autonome Neuropathie (häufig!)
 - Polyneuropathien verschiedener Genese, M. Parkinson
 - Isolierte autonome Insuffizienz (Bradbury-Egglestone-Syndrom)
 - Multisystematrophie (Shy-Drager-Syndrom u.a.)
 - Baroreflexversagen
 - Dopamin-β-Hydroxylase-Mangel, u.a.

selten

Nach dem Verhalten von Puls und Blutdruck im <u>Schellong-Stehversuch</u> 3 Reaktionstypen:


- Sympathikotone OH = häufigster Typ (2/3 aller Fälle)
 Abnahme des systolischen Blutdrucks > 20 mmHg bei unterschiedlichem Verhalten des diastolischen Blutdrucks, Anstieg der Pulsfrequenz um mehr als 16/min
- Asympathikotone OH: Absinken des systolischen (> 20 mmHg) und diastolischen Blutdruckes (> 10 mmHg), Pulsfrequenz gleich bleibend oder abfallend
- <u>Orthostase-Intoleranz</u> (Syn. <u>P</u>osturales <u>o</u>rthostatisches <u>T</u>achykardie<u>s</u>yndrom = POTS): Pulsanstieg um > 30/Min oder HF-Anstieg > 120/Min ohne Hypotonie


Schellong-Test:

10 Min. Liegen (L) + 10 Min. Stehen (S), Messen von Blutdruck + Puls im Abstand von 1 Minute (oder als Schnelltest nach 1, 3 und 5 Min.)

Normale Reaktion:

Blutdruckabfall systolisch < 20 mmHg/diastolisch < 10 mmHg. Da das Kreislaufverhalten eine Tagesrhythmik zeigt, sollte der Schellong-Test zu verschiedenen Tageszeiten wiederholt werden.

- **KL.:** 1. Eine <u>arterielle Hypotonie</u> hat meist keinen Krankheitswert. Ausnahme: Es treten Symptome der zerebralen Minderdurchblutung und Leistungsminderung auf:
 - <u>Nachlassen der Leistungsfähigkeit</u>, rasche Ermüdbarkeit, lange morgendliche "Anlaufzeit", Störung der Konzentrationsfähigkeit
 - Depressive Verstimmung, innere Unruhe, Schlafstörung
 - Kalte Hände und Füße (DD: Vegetative Dystonie)
 - 2. Orthostatische Hypotonie und Orthostase-Intoleranz (Blutdruckabfall > 20 mmHg systolisch und/oder 10 mmHg diastolisch im Schellong-Test): Schwindelgefühl, Schwarzwerden oder Flimmern vor den Augen beim Aufstehen aus dem Bett oder beim Bücken, evtl. orthostatischer Kollaps (Synkope): Plötzlicher Blutdruckabfall infolge akuter Verminderung des venösen Rückstromes zum Herzen mit Bewusstseinstrübung oder kurzfristigem Bewusstseinsverlust. Ko.: Frakturen!

• Kopfschmerzen, Ohrensausen

• Kardiale Sensationen: Herzklopfen, Schmerzen in der Herzgegend, Beklemmungsgefühl

Di. der Hypotonie:

Anamnese, Klinik, Schellong-Test, 24 h-Blutdruckmessung, kausale Diagnostik

- <u>Th.:</u> a) <u>Kausal:</u> Bei den symptomatischen Hypotonien: z.B. Weglassen von Medikamenten, die eine Hypotonie oder Orthostasereaktion verursachen (z.B. Diuretika, Psychopharmaka u.a.)
 - b) <u>Symptomatisch:</u> Niedriger Blutdruck per se ist keine Behandlungsindikation. Bei Beschwerden infolge Hypotonie (hypotoner Symptomenkomplex) genügen meist Allgemeinmaßnahmen.
 - 1. Allgemeinmaßnahmen:
 - Vermehrte Kochsalzzufuhr (z.B. Salzbutterbrot zum Frühstück) + vermehrte Flüssigkeitszufuhr (2 - 3 l/d); häufigere, kleine Mahlzeiten - KI: Herzinsuffizienz

Kreislauftraining (Sport)

- Massagen, Hydrotherapie (Kneipp)
- Schlafen mit um 20 Grad angehobenem Oberkörper vermindert eine evtl. Hypertonie im Liegen, die nächtliche Diurese und Orthostasereaktion am Morgen
- Langsames Aufstehen nach Bettruhe
- Kompressionsstrumpf(hosen)
- Bei Neigung zu OH Überkreuzen der Beine im Stehen oder evtl. Hockstellung
- Medikamente (ohne Evidenz für Nutzen)
 - Sympathomimetika (Alpha-Adrenorezeptoragonisten), z.B. Midodrin (Gutron®), Etilefrin NW: Palpitationen, Herzrhythmusstörungen, innere Unruhe, Zittrigkeit, Piloerektion, Angina pectoris bei KHK, Miktionsstörung bei Prostatahypertrophie

KI: KHK, Herzrhythmusstörungen, Prostatahypertrophie, Engwinkelglaukom, Hyperthyreose, Schwangerschaft und Stillzeit (Ausnahme: Etilefrin KI nur im 1. Trimenon der Schwangerschaft)

Ind.: Hypo- und asympathikotone OH - Dos: z.B. Etilefrin 5 - 10 mg 1 - 3 x/d

Mineralokortikosteroide: Fludrocortison (Astonin® H)

Wi.: Natriumretention mit Vermehrung des zirkulierenden Blutvolumens

<u>NW:</u> Hypokaliämie, Natrium-/Wasserretention, evtl. mit Ödemen und Gewichtszunahme, Hypertonie, Depressionen, Akne

KÍ: Herzinsuffizienz u.a.

Ind.: Asympathikotone OH (in Kombination mit Sympathomimetika)

Dos: 0,1 mg/d (initial evtl. mehr)

SYNKOPE [R55]

Internet-Infos: ESC-Leitlinie 2018, DGN-Leitlinie 2020

<u>Def:</u> Plötzlich einsetzender, kurz andauernder, spontan reversibler Bewusstseinsverlust (TLOC = transient loss of consciousness) infolge zerebraler Minderperfusion mit oder ohne Hinstürzen. In 20 % kommt es dabei zu Verletzungen.

Ep.: Ca. 40 % aller Menschen erleiden in ihrem Leben mind. eine Synkope.

Einteilung (ESC und DGK):

1. Reflexvermittelte Synkopen:

- <u>Neurokardiogene Synkope (NCS):</u> = <u>Vasovagale Synkope (VVS):</u> Häufigste Form der Synkope bei gesunden Personen.

<u>Prodromi einer NCS:</u> Schwindel, Schwarzwerden vor den Augen, Herzklopfen, Schwitzen, Blässe, Übelkeit u.a.

Pg.: Angst, Schmerz und Stress lösen eine Reflexkaskade aus mit Verminderung der Sympathikus- und Zunahme der Parasympathikusaktivität → Blutdruckabfall und Bradykardie → NCS (Emotionssynkope).

Di.: Kipptischversuch: Der auf einem Kipptisch fixierte Patient wird nach 15 Min. Liegen um 60 - 80° passiv aufgerichtet und bis zu 45 Min. so positioniert. Tritt eine Synkope ein, ist der Test positiv und beweist die vasovagale Synkope.

- Karotis-Sinus-Syndrom mit Synkopen

- Hustensynkope

- Miktionssynkope } pressorische Synkopen

Lachsynkope

2. Orthostatische Synkope: Auslösende Faktoren sind plötzliches Aufstehen aus liegender Position oder längeres Stehen

Pg.: Versagen des vasokonstriktorischen Reflexes im Bereich der Kapazitätsgefäße (Venen) der Beine.

3. Kardiovaskuläre Synkope:

- Arrhythmogene Synkope durch Bradyarrhythmien, Morgagni-Adams-Stokes-Anfall, Tachyarrhythmien
- Synkopen durch Herz-/Lungenerkrankungen: z.B. Synkopen bei Aortenklappenstenose, HOCM, Lungenembolie

DD: Andere Ursachen eines Bewusstseinsverlustes:

Hypoxie, Hyperventilation/Hypokapnie, epileptischer Anfall (lateraler Zungenbiss), TIA (bei vertebrobasilärer Ischämie), dissoziativ-psychogene Anfälle (ungewöhnliche Verrenkungen in der Attacke, Augenschluss, psychische Auffälligkeiten u.a.)

Nichtepileptische Sturzanfälle (drop attacks) ohne Bewusstseinsverlust

Anamnese und Gesamtablauf des Anfalls sind dabei wichtig und zu erfragen!

- (Fremd-)anamnese (am wichtigsten!): Genaue Umstände der Bewusstlosigkeit erfragen! Di.:
 - Medikamentenanamnese
 - Klinik / Labor / Blutdruck / 12-Kanal-Ekg/Loop-Rekorder

Anamnese / Befund	Diagnose
Schmerz oder emotionale Stresssituationen, langes Stehen mit	Vasovagale Synkope
prämonitorischen Symptomen wie "weiche Knie" oder "flaues Ge-	(NCS = neurocardiogenic
fühl im Bauch"	syncope)
Synkope unmittelbar nach dem Aufstehen. Abfall des systoli-	Orthostatische Synkope
schen Blutdrucks im Stehen > 20 mmHg bzw. auf < 90 mmHg	
Pathologisches EKG:	Arrhythmogene Synkope
Sinusbradykardie < 40/min	(Morgagni-Adams-
Sinusknotenstillstand > 3 Sekunden	Stokes-Anfall)
 AV-Block Grad II (Typ Mobitz) / Grad III Wechselnder Links- und Rechtsschenkelblock 	·
Wechselnder Links- und Rechtsschenkelblock	

Weitere Diagnostik:

Test	Vermutete Diagnose
Kipptisch-Untersuchung	NCS (vasovagale Synkope)
Schellong-Test (3 Minuten)	Orthostatische Synkope
Echokardiografie	Arrhythmogene Synkope
Ergometrie	(Morgagni-Adams-Stokes-
Langzeit-EKG	Anfall)
Event-Rekorder (ILR = implant loop recorder)	·

- Ergänzende Diagnostik: Ausschluss eines Karotis-Sinus-Syndroms (siehe dort); evtl. neurologisches Konsil, evtl. elektrophysiologische Untersuchung (EPU) bei V.a. arrhythmogene Synkope

<u>Th.:</u> der orthostatischen Synkope:

Flachlagerung mit angehobenen Beinen; weitere Einzelheiten: Siehe Kap. "Orthostatische Hypotonie^{*}

Optionen zur Prophylaxe einer NCS:

- Erlernen Prodromi zu erkennen und durch rechtzeitiges Setzen/Hinlegen eine NCS zu vermeiden. Isometrische Übungen: Kreuzen der Beine, Anspannen der Gesäßmuskulatur (physikalische Gegendruckmanöver). Jendrassik-Handgriff (Finger ineinander haken und mit beiden Armen kräftig nach außen ziehen). Salz- und Flüssigkeitszufuhr; Absetzen von Medikamenten mit blutdrucksenkender NW. Meiden von Dehydratation, Stress, Alkoholkonsum, heiße Räume u.a. Auslösern
- Verordnung von Kompressionsstrümpfen/-hosen
- Kipptisch-Training in spezialisierten Kliniken oder Stehtraining

• <u>Arrhythmogene Synkopen:</u> Therapie der kardialen Grundkrankheit, Indikation zur Herzschrittmacher-/ICD-Therapie prüfen.

<u>Prg:</u> Reflexvermittelte Synkopen und orthostatische Synkopen haben eine gute Prognose (sofern kein Unfall passiert).

Arrhythmogene Synkopen bei strukturellen Herzerkrankungen haben ein erhöhtes Sterberisiko durch plötzlichen Herztod in Abhängigkeit von der kausalen Erkrankung.

ANHANG:

SCHWINDEL (VERTIGO) [R42]

Vo.: Nach Kopfschmerzen zweithäufigste Ursache für ärztliche Konsultationen, Prävalenz im Alter zunehmend (bis zu 40 % der über 80-jährigen - Lebenszeitprävalenz mittelschweren und schweren Schwindels bis zu 30 %)

<u>Def:</u> Unangenehm empfundene verzerrte Wahrnehmung (Scheinwahrnehmung) des umgebenden Raumes oder von Bewegungen, häufig mit vegetativen Symptomen (insb. Übelkeit und Brechreiz) vergesellschaftet. Schwindel entsteht durch gestörtes Zusammenspiel von visueller, vestibulärer und somatosensorischer Wahrnehmung. Schwindel ist keine Erkrankung, sondern ein Symptom!

<u>Schwindelformen (allgemein):</u> Bewegungsschwindel (Dreh-, Schwank-, Liftschwindel) und unsystematischer Schwindel (Benommenheitsgefühl ohne Bewegungskomponente); Attacken- oder Dauerschwindel

Formen vestibulären Schwindels:

1. Benigner paroxysmaler Lagerungsschwindel

Ep.: Im höheren Alter zunehmend: Bis zu 10 % bei 80-jährigen; w : m = 2 : 1

PPh: Kanalolithiasis/Kupulolithiasis der Bogengänge

KL.: Drehschwindelattacken (< 30 Sek. andauernd) mit oder ohne Übelkeit und Oszillopsien

(Scheinbewegungen der Umwelt), ausgelöst durch Kopfwendung (insb. morgens)

<u>Di.:</u> Körperliche Untersuchung mit Lagerungsmanövern nach Dix-Hallpike und Supine-Roll-Test (Auslösung des Nystagmus bei Störung im posteriorem Bogengang nach einigen Sekunden, für 15 - 30 Sekunden anhaltend, crescendo-decrescendoartiger Verlauf, rasches Abklingen von Nystagmus und Schwindel in Ruhe; bei gestörtem horizontalen Bogengang kaum ermüdbarer Nystagmus, Auftreten ohne Latenz, linear-horizontaler Nystagmus)

Prg: Klingt häufig spontan innerhalb von Wochen ab, persistiert unbehandelt in 30 % d.F.

<u>Th.:</u> Lagerungsmanöver nach Epley und Semont (sog. Befreiungsmanöver) für posterioren Bogengang, "Barbecue"-Rotation für horizontalen Bogengang

2. Neuritis vestibularis

Syn: Neuropathia vestibularis, Neuronitis vestibularis

Ep.: Inzidenz 3,5/100.000/J., Krankheitsgipfel 30. - 60. Lj.

PPh: Akuter einseitiger teilweiser oder vollständiger Vestibularisausfall unklarer Genese

<u>KL.:</u> Akut einsetzend Tage bis Wochen anhaltend, starker Dauerdrehschwindel mit Verstärkung bei Kopfwendung, Oszillopsien, ipsiversive Fallneigung, Übelkeit und Erbrechen, keine Hörstörung, horizontaler Spontannystagmus zur gesunden Seite (verstärkt beim Blick zum Nystagmus); pathologischer Halmagyi-Curthoys-Kopfimpulstest (rasche Kopfdrehung und Fixation eines stationären Punktes) und ggf. pathologische kalorische Prüfung; im Verlauf ggf. benigner paroxysmaler Lagerungsschwindel ipsilateral oder phobischer Schwankschwindel

Differenzierung von peripherer Vestibulopathie und Hirninfarkt (Trias anhaltender Drehschwindel,

Übelkeit, Fallneigung):

- Horizontaler Kopfimpulstest: Rasche Kopfbewegungen zur Läsionsseite bewirken gut sichtbare Korrektursakkade
- Nystagmustest: Horizontaler Spontannystagmus zur nicht betroffenen Seite bei Läsion des N. vestibularis
- Vertikale Divergenz bei Hirnstamm-/Kleinhirnläsion (sog. Skew deviation): Beim Verdecken eines Auges stehen beide Bulbi auf unterschiedlicher vertikaler Höhe

<u>Th.:</u> Antivertiginosa (z.B. Dimenhydrinat) nur innerhalb der ersten 48 h, sonst Verzögerung der zentralen Kompensation; Methylprednisolon initial 100 mg/d, Reduktion alle 4 Tage um 20 mg; physikalische Therapie und Physiotherapie

3 M Ménière

<u>Ep.:</u> Lebenszeitprävalenz 0,5%, Häufigkeitsgipfel: 40. - 60. Lj., m > w

<u>PPh:</u> Endolymphhydrops des Labyrinths

<u>KL.:</u> Drehschwindelattacken mit Übelkeit/Erbrechen, <u>einseitige Hörminderung</u> (Tieftonbereich), Tinnitus, Ohrdruck, im Verlauf bis 50 % beidseits

Di.: Audiometrie, AEP

Th.: Evidenzlage zur Therapie unsicher, ggf. Hochdosistherapie mit Betahistin (bis zu 3 x 48mg)

Weitere Form vestibulären Schwindels: <u>Bilaterale Vestibulopathie und Vestibularisparoxysmie:</u> Siehe HNO-Literatur/Internet

Formen nicht-vestibulären Schwindels:

1. Internistische Ursachen, z.B.:

 Nichtkardial: Orthostatischer Schwindel (häufig bei ca. 20 % der > 65jährigen), Hyperventilation, Panikattacken, Anämie, Hypoglykämie, postinfektiös, Hypoxie, medikamentös (blutdrucksenkende Mittel, Sedativa, Antidepressiva, Antiepileptika u.a.)

- <u>Kardial:</u> Synkopen (siehe dort), <u>Herzrhythmusstörungen</u> (Tachy-/Bradykardien), strukturelle Herzerkrankungen mit vermindertem Herzminutenvolumen (z.B. Myokardinfarkt, Klappenvitien, Kardio-

myopathien)

2. Somatoformer Schwindel/phobischer Schwankschwindel (siehe auch Post-fall-Syndrom):

<u>KL.:</u> Fluktuierender Dauerschwank- und Benommenheitsschwindel, seltener Drehschwindel; oft diffuse Symptomatik (Benommenheit, Leere im Kopf, Angst); subjektive Gang- und Standunsicherheit; häufig im Verlauf Kombination mit anderen somatoformen Störungen

Th.: Psychotherapie, anfangs ggf. SSRI (ggf. kurzfristig Anxiolytika, z.B. Lorazepam), Gangschulung

3. Okulärer Schwindel (Störungen der Okulomotorik, Visusstörungen)

4. Zervikogener Schwindel:

Ausschlussdiagnose, Besserung durch physikalische Maßnahmen und Krankengymnastik

<u>Memo:</u> Bei älteren Patienten ist die Kombination mehrerer Ursachen für den Schwindel häufig (sensorische Defizite, z.B. Polyneuropathie - neurodegenerative Ursachen, z.B. Parkinson-Syndrom - Medikamente, Alkohol u.a.).

S C H O C K [R57.9]

Internet-Infos: Deutsches Ärzteblatt, Heft 45/9.11.2018; DOI:10.1002/clc.23168;

DOI:10.2174/1573403X15666181212125024; https://www.awmf.org/leitlinien/detail/ll/019-013.html

<u>Def.:</u> Allen Schockformen ist ein gravierendes Missverhältnis von O2-Angebot und O2-Bedarf gemeinsam. Klinischer Ausdruck eines Kreislaufversagens, welches zu einer inadäquaten zellulären Sauerstoff-Nutzbarmachung führt. Akute Minderperfusion vitaler Organsysteme, die zu einem globalen Missverhältnis zwischen Sauerstoffangebot und Sauerstoffbedarf auf zellulärer Ebene führt mit Hypoxie der Gewebe und metabolischen Störungen.

Pg.: Dem Blutdruckabfall im Schock folgt kompensatorisch eine Ausschüttung von Katecholaminen mit Herzfrequenzanstieg und Engerstellung von Arteriolen und venösen Kapazitätsgefäßen. Daher kann initial der arterielle Blutdruck noch normal sein. Aufgrund der unterschiedlichen Verteilung von α- und β-Rezeptoren erfolgt eine Umverteilung der zirkulierenden Restblutmenge (Zentralisation) um die Durchblutung lebenswichtiger Organe, wie Herz, Gehirn, Lunge und Leber zu gewährleisten. Bei Minderperfusion von Organen mit Gewebshypoxie kommt es zellulär zu einem Umschalten von aerober auf anaerobe Energiegewinnung mit Ausbildung einer Hyperlaktatämie und metabolischen Azidose. Entwicklung von Organdysfunktionen (siehe Abschnitt septischer Schock).

Ät.: Hauptgruppen:

I. Volumen:

- 1. Hypovolämischer Schock
 - Hämorrhagischer Schock
 - Traumatisch-hämorrhagischer Schock + Gewebeschädigung
 - Hypovolämischer Schock, Abnahme zirkulierendes Plasmavolumen ohne Blutung
 - Traumatisch-hypovolämischer Schock + Gewebeschädigung
- Distributiver Schock (häufigste)
 - Septischer Schock
 - Anaphylaktisch / anaphylaktoider Schock
 - Neurogener Schock

II. Auswurf:

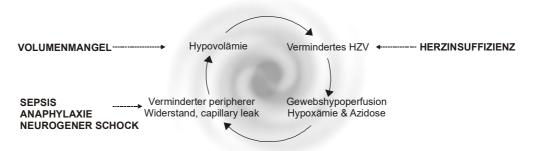
- 3. Kardiogener Schock
 - Myokardiales Pumpversagen
 - Brady- und Tachyarrhythmien
 - Herzklappen: Akute Insuffizienz, dekompensierte Stenose

4. Obstruktiver Schock

Obstruktion großer Gefäße (z.B. Lungenembolie)

Ad 1.: Unzureichende Durchblutung von Organen aufgrund eines meist akuten intravasalen

Volumenmangels ohne bzw. mit Blutung


Ad. 2.: Relative Hypovolämie infolge einer pathologischen Umverteilung des absoluten intravasalen Volumens (häufigste Form); endotheliale Dysfunktion: Fehlregulierte Steuerung des Gefäßtonus mit Vasodilatation, Verteilungsstörungen und Volumenverschiebungen in der Makround Mikrozirkulation sowie Erhöhung der vaskulären Permeabilität (kapilläres Lecksyndrom)

<u>Ad 3.:</u> Primär kardiale Funktionsstörung mit kritischer Verminderung der kardialen Pumpleistung, verursacht durch eine systolische oder diastolische Funktionsstörung mit Verminderung der Auswurfleistung oder Beeinträchtigung der ventrikulären Füllung

Ad 4.: Durch Obstruktion großer Gefäße oder des Herzens verursacht.

Oft Kombination dieser Mechanismen, wie im septischen Schock: Hypovolämie, Vasodilatation, kardiale Funktionsstörungen und mitochondriale Dysfunktion mit Gerinnungsstörungen.

<u>Schockspirale:</u> Der Circulus vitiosus kann unterschiedliche Ursachen haben. Einmal begonnen, schreitet das Geschehen ohne adäquate therapeutische Intervention <u>mit zunehmender Dynamik</u> kontinuierlich fort!

- **Vo.:** Anhaltswerte bezüglich der Häufigkeitsverteilung: Distributiv ~ 65 % (~ 60 % septisch, ~ 5 % anaphylaktisch/neurogen), hypovolämisch ~ 20 %, kardiogen ~ 15 %, obstruktiv ~ 2 %
- KL.: Klinische, hämodynamische, bildgebende und biochemische Zeichen

Schockindex = Puls / RRsyst. (> 1 Schock)

Ad 1., 3., 4.: Feucht-kühle, blasse Haut, Durst, Oligurie

<u>Ad 2.:</u> Warme Haut, Flush; neurogen: RRsyst. < 100 mmHg und Bradykardie < 60/Min.

Anaphylaxie: Vier Schweregrade der anaphylaktischen Reaktion:

0: Lokal begrenzte kutane Reaktion ohne klinische Bedeutung

- I: Allgemeinsymptome (Schwindel, Kopfschmerz, Angst u.a.) + Hautreaktionen (Flush, Juckreiz, Urtikaria u.a.)
- II: Zusätzlich: Blutdruckabfall + Tachykardie sowie gastrointestinale Symptome (Übelkeit, Erbrechen u.a.), leichte Dyspnoe
- III: Zusätzlich: Bronchospasmus (Asthmaanfall) und Schock, selten auch Larynxödem mit inspiratorischem Stridor

IV: Atem-, Kreislaufstillstand

Ad 3.: Feuchte Rasselgeräusche über den basalen Lungenabschnitten, Dyspnoe

- **Ko.:** Mehrorgandysfunktion (reversibel) bzw. Multiorganversagen (irreversibel) als Folge der Imbalance zwischen O2-Bedarf und O2-Angebot
- <u>DD:</u> Beim Volumenmangel kollabierte Venen, bei kardialen Faktoren und Obstruktion gestaute Venen, gut zu beurteilen am Zungengrund und am Hals.
- <u>Di.:</u> Basiert auf klinischen, hämodynamischen und biochemischen Zeichen 3 Komponenten:
 - 1. Arterielle Hypotension mit Brady-/Tachykardie: RRsyst < 90 mmHg + MAP < 70 mmHg

2. Gewebshypoperfusion

- Kutan (kalte und klamme Haut, Vasokonstriktion und Zyanose, Niedrig-Flusszustände)

- Renal (Urinmenge < 0,5 ml/kg KG/h)

- Neurologisch (veränderter Bewußtseinslage, Desorientiertheit, und Verwirrtheit)
- 3. Hyperlaktatämie (> 2 mmol/l): Abnormalen zellulären Sauerstoffmetabolismus anzeigend

• Anamnese: Nach Trauma mit Blutverlust hypovolämischer Schock wahrscheinlich

- Körperliche Untersuchung: Hautfarbe und Temperatur, Jugularvenenfüllung, periphere Ödeme
- Klinische Untersuchungen: ABCDE: Atemwege, Belüftung, Circulation (Kreislauf), Disability (Neurologie), Exposition; Puls, Blutdruck, Atmung, Auskultation, Bewusstseinslage, Sensorik, Motorik, Echo (bei jedem Patienten im Schock): Perikarderguss; Größe und Pumpfunktion

linker und rechter Ventrikel; atemabhängige Füllung der Vena cava; Kalkulation des aortalen Velocity-time-Integrals als Maß für Schlagvolumen

Therapieziele Hämodynamik:

Arterieller Druck

MAP von 65 - 70 mmHg, ggf. höher in Abhängigkeit vom Erreichen einer Wiederherstellung der Gewebeperfusion, beurteilbar durch Urinproduktion, Hautdurchblutung, kognitive Funktion; dynamische den statischen Variablen vorziehen für Ansprechen auf Flüssigkeitszufuhr

• HZV: Nach Korrektur einer Hypoxie und einer schweren Anämie ist das HZV die Hauptdeterminante des Sauerstoffangebots

Messung der gemischt-venösen Sauerstoffsättigung (SvO₂)

 SvO2: Erniedrigt bei Patienten mit Niedrig-Fluss-Zuständen (hypovolämischer und kardiogener Schock) oder Anämie

SvO₂: Normal oder erhöht bei Patienten mit distributivem Schock (anaphylaktischer und septischer Schock)

Blutlaktatkonzentrationen

Bei Niedrig-Fluss-Zuständen liegt der primäre Mechanismus für die Hyperlaktatämie in der Gewebshypoxie mit Entwicklung eines anaeroben Metabolismus. Serielle Laktatbestimmungen sind sinnvoll. Bei effektiver Therapie sollten die Laktatkonzentrationen innerhalb von Stunden abfallen. Ein Abfall von über 20 % innerhalb von 2 Stunden war mit einer reduzierten Krankenhausletalität verbunden.

Vier Therapiephasen:

Rettungsphase

Ziel: Minimalen Blutdruck und HZV erzielen, vereinbar mit akutem Überleben

Monitoring der Vitalparameter: Arterielle Druckmessung und ZVK

Arterielle Kanüle zum Monitoring des arteriellen Blutdrucks und zur Blutabnahme

- Zentraler Venenkatheter zur Infusion von Flüssigkeit und von vasoaktiven Substanzen sowie zur Steuerung der Volumentherapie

Optimierungsphase

Zelluläre Sauerstoffverfügbarkeit erhöhen. Adäquate Wiederherstellung des Kreislaufs Messung der SvO2 (gemischtvenöse O2-Sättigung) und der Laktatkonzentrationen zur Therapiesteuerung, evtl. HŽV Monitoring

3. Stabilisierungsphase

Organdysfunktionen vermeiden. Komplikationen minimieren. Organunterstützende Maßnahmen

Deeskalationsphase

Entwöhnung von vasoaktiven Substanzen. Spontane Polyurie bewirken, Flüssigkeitselimination durch Diuretika oder Ultrafiltration, um negative Flüssigkeitsbilanz zu erzielen.

Wiederherstellung der Kreislauffunktion schon während der Ursachenabklärung! Das initiale Management ist problemorientiert!

Schnelle Korrektur der Ursache:

Kontrolle einer Blutung, Traumachirurgie

- Perkutane Koronarintervention bei Akutem Koronarsyndrom (ACS) Perikarddrainage
- Thrombolyse oder Embolektomie bei massiver Lungenembolie
- Antibiose und Fokussanierung bei septischem Schock

VIP-Regel:

- Ventilation (Sauerstoffgabe: SaO2 94 98 %, Hyperoxämie vermeiden
- Infusion (Wiederherstellung des Flüssigkeitsstatus)
- Pumpen (Gabe vasoaktiver Substanzen)

Unterstützung der Atmung:

Sofortige Sauerstoffgabe, um Sauerstoffangebot zu erhöhen und pulmonale Hypertension zu vermeiden. Maschinelle Beatmung (NIV/Intubation) bei schwerer Atemnot, Hypoxämie, oder persistierender bzw. sich verschlechternder Azidose (pH < 7,30). Zusätzlicher günstiger Effekt durch Verringerung des Sauerstoffbedarfs der Atemmuskulatur und der linksventrikulären Nachlast durch intrathorakale Druckerhöhung.

 Wiederherstellung des Flüssigkeitsstatus: Flüssigkeitsgabe, um den mikrovaskulären Blutfluss und das Herz-Zeit-Volumen zu verbessern. Ziel: Herz-Zeit-Volumen soll Vorlast-unabhängig

sein, d. h. auf dem Plateauteil der Frank-Starling-Kurve. PICCO

Flüssigkeits-Belastungs-Test durchführen, um die aktuelle Reaktion des Patienten auf Volumengabe zu bestimmen, z. B. passives Anheben der Beine.

1. Art der Flüssigkeit: Erste Wahl Kristalloide

<u>Infusionsgeschwindigkeit:</u> Initial 300 - 500 ml in 20 - 30 Min. <u>Ziel</u> der Flüssigkeitsgabe festlegen: Anstieg des arteriellen Druckes, Senkung der Herzfrequenz, Steigerung der Urinmenge

Sicherheitsgrenzen bestimmen, um Lungenödem zu vermeiden

Bei schwerer Hypotension und Persistenz trotz adäquater Flüssigkeitssubstitution

Akzeptierte Praxis: Vorübergehende Gabe vasoaktiver Substanzen während laufender Flüssigkeitsrekonstitution. Adrenerge Agonisten: Schnelles Ansprechen, hohe Potenz, kurze Halbwertszeit, leichte Dosisadjustierung.

- Noradrenalin: 1. Wahl, da α -adrenerge Eigenschaften, jedoch geringe β -adrenerge Effekte

hilfreich, um HZV aufrechtzuerhalten (üblicherweise 0,1 - 2,0 μg/kg KG/min).

- Dobutamin: 1.Wahl, um HZV zu steigern, v.a. β-adrenerg, nicht mehr als 20 μg/kg KG/min **Cave:** Dopamin nicht empfohlen. Adrenalin zeigte erhöhte Arrhythmierate u.a. nachteilige Effekte.

• Massivtransfusion: Verlust bzw. Austausch des zirkulierenden Blutvolumens innerhalb von 24 h, Verlust bzw. Austausch von 50 % des zirkulierenden Blutvolumens innerhalb von 3 h, anhaltender Blutverlust mit 150 ml/min, Transfusion von ≥ 10 Erythrozytenkonzentraten (EK) in 24 h, Substitutionsbedarf > 2 EK in 15 Min.

Kritische Werte für die Gerinnung werden erreicht bei Verlust von 150 % des Blutvolumens für Fibrinogen, sowie von 200 % des Blutvolumens für Gerinnungsfaktoren und Thrombozyten. Stufenschema bei Massivtransfusion: 2.000 - 3.000 ml Vollelektrolytlösung + 5 EK, anschließend 5 EK + 5 Fresh Frozen Plasma (FFP), gefolgt von jeweils 5 EK + 5 FFP + 1 Thrombozytenkonzentrat (TK). Falls die Blutgruppe noch nicht bekannt ist, kann im Notfall verabreicht werden: Initial 4 - 6 EK "0 rh neg" + 4 - 6 FFP der Blutgruppe AB (enthält weder anti-A noch anti-B) + 3 - 4 g Fibrinogen. Mind. 1-stündliche Bestimmung von Blutgasanalyse, Laktat, ionisiertem Calcium, Hb, Thrombozytenzahl, INR, PTT und Fibrinogen. Bei initial vorhandener Koagulopathie wird die Gabe von 3 - 4 g Fibrinogen, 15 ml/kg KG FFP sowie 2 Einheiten Thrombozyten empfohlen.

- Bei Polytraumatisierten mit Massivtransfusion wird eine permissive Hypotension erwogen, d.h. bei Patienten ohne ZNS-Trauma ein MAP ≥ 65 mmHg (systol. RR 80 - 100 mmHg), sowie bei Patienten mit Schädelhirntrauma ein MAP ≥ 90 mmHg. Bei isotonen Vollelektrolytlösungen soll mind. das 2 - 3fache des Verlustes infundiert werden.

Anm.: Die Gabe kolloidalen Volumenersatzes kann erwogen werden, der prognostische

Nutzen ist aber nicht belegt. - Ein gepooltes TK aus 4 Vollblutspenden enthält ca. 2 - 4 x 10¹¹ Thrombozyten. Die Therapieziele liegen bei einem Hb von 8 - 10 g/dL, sowie bei > 50 x 10⁹/L für Thrombozyten.

- Als Antifibrinolytikum kann Tranexamsäure 1 g als Bolus, gefolgt von 1 g/8 Stunden als Infu-

sion verabreicht werden.

- Das in den FFP zur Konservierung enthaltene Natriumzitrat führt zu einer Komplexbildung mit Calcium. In der Praxis werden 20 ml Calciumgluconat 10 % zur Kompensation des Citrats für jeweils 4 FFP appliziert.
- <u>Risiko von Blutprodukten:</u> <u>Kontamination von Blutprodukten</u> mit Bakterien, Parasiten und Viren und deren Übertragung wird mit ca. 1:3 Mio. angegeben und ist damit sehr niedrig. Das Risiko einer bakteriellen Kontamination ist bei Thrombozytenkonzentraten höher als bei Erythrozytenkonzentraten oder FFP, da Thrombozytenkonzentrate bei Raumtemperatur gelagert werden (22°C ± 2°C), wodurch bakterielles Wachstum begünstigt wird. Das Risiko für die Übertragung von Hepatitis B beträgt ca. 1:100.000 bis 1:1 Mio., von Hepatitis C weniger als 1:10 Mio., sowie von HIV ca. 1:10 Mio.

<u>Transfusion-related acute lung injury</u> (= <u>TRALI</u>) mit Permeabilitätslungenödem durch Leukozyten-Ak im Spender-FFP ist als Komplikation sehr selten geworden, seit Frauen (Ak-Bildung im Rahmen der Schwangerschaft bzw. peripartal) nicht mehr Spender für FFP sind.

Fehltransfusion durch Verwechslung bei der Blutabnahme oder der Patientenidentifizierung (Vorkommen: 1:3.000 Patienten); leicht erhöhtes Risiko für TVT (tiefe Venenthrombose und LE [Lungenembolie])

• Anaphylaxie - Therapie:- Lagerung flach, Beine evtl. angehoben, O2-Gabe

- Weitere Antigenzufuhr stoppen, i.v.-Nadel nach Kontrastmittelapplikation liegen lassen! Groß-

lumiger venöser Zugang.

- Epinephrin (Adrenalin): Dos. Suprarenin®: 1 ml = 1 mg Epinephrin → 1 ml der Lösung mit 9 ml NaCl 0,9 % auf das 10fache verdünnen → 1 ml der 10fach verdünnten Lösung = 0,1 mg Adrenalin. Bei nicht reanimationspflichtigen Patienten sofort 0,3 - 0,5 mg i.m. Bei drohender Kreislaufdekompensation 0,1 mg i.v. (i.v.-Gabe kann nach einigen Min. wiederholt werden).
- Rasche Volumensubstitution in ausreichender Menge (bei kardial suffizienten Erwachsenen 2.000 - 3.000 ml in 30 Min.)
- Prednisolon: 500 1.000 mg i.v. (Wirkung erst nach 10 30 Min.!)
- Histaminantagonisten:
 - H1-Antagonisten: z.B. Clemastin (Tavegil®) 2 mg i.v.
 - H2-Antagonisten: z.B. Ranitidin 50 mg i.v.

Ergänzende Maßnahmen:

- Bei Bronchospasmus: Rasch wirksame Beta2-Sympathomimetika als Spray u.a. (siehe Kap. Asthma)
- Bei Anschwellen der oberen Atemwege ggf. Intubation, bei Atemwegsverlegung durch Larynxödem Koniotomie als Ultima Ratio
- Bei Kreislaufstillstand (Grad IV der anaphylaktischen Reaktion): Kardiopulmonale Reanimation
- Patienten mindestens 24 h stationär überwachen, da bis zu 20 % aller anaphylaktischen Reaktionen zweiphasig verlaufen mit einem Intervall von 1 24 h (selten länger).

<u>Pro:</u> Beratung, Schulung, Notfallausweis und Notfallset; spezifische Immuntherapie bei Bienenoder Wespenallergie; Meidung von ACE-Hemmern und Betablockern (die den Verlauf der allergischen Reaktion verschlimmern können) u.a.

<u>Anm.:</u> Septischer Schock: Siehe nächstes Kap. Die übrigen Schockursachen sind in den entsprechenden Organkapiteln dargestellt.

<u>Prg:</u> Hohe Morbidität und Mortalität, daher frühzeitiges Erkennen und aggressives Management essentiell für Prognose von Schockzuständen.

SEPSIS | [A41.9]

<u>Internet-Infos:</u> www.sepsis-gesellschaft.de; www.esicm.org/ssc-2016-guidelines-access-in-intensive-care-medicine/; www.qsofa.org/index.php; https://www.awmf.org/leitlinien/detail/ll/079-001.html; Surviving-Sepsis-Campaign-Hour-1-Bundle.pdf (sccm.org); https://ars.rki.de/Content/Database/PathogenOverview.aspx; https://www.sccm.org/SurvivingSepsisCampaign/Guidelines/Adult-Patients

<u>Def:</u> Sepsis-3-Definition 2016 ist an das Letalitätsrisiko geknüpft:

- Sepsis = Lebensbedrohliche Organdysfunktion aufgrund einer inadäquaten Wirtsantwort auf eine Infektion = akute Veränderung ≥ 2 Punkte im Gesamt SOFA-Score (Sequential Organ Failure Assessment), Letalität > 10 %. Inadäquate Wirtsantwort: Entzündungsreaktion, Gerinnung, Immunsystem, neuroendokrines System, zellulärer Metabolismus etc.
- <u>Septischer Schock</u> = Sepsis + Serum-Laktat > 2 mmol/l + Vasopressor-abhängige Hypotension trotz adäquater Flüssigkeitssubstitution (um MAP ≥ 65 mmHg zu halten), Letalität > 40 %.

Identifikation von Patienten in der Ambulanz, Notaufnahme und auf Normalstation mit Verdacht auf eine Infektion und Risiko für Organversagen: Risiko für eine Sepsis und Letalität 3 - 14 x erhöht, wenn ≥ 2 Parameter des guick-SOFA (gSOFA, Sensitivität 50 - 70 %) erfüllt:

1. Atemfrequenz ≥ 22/Min, 2. Verwirrtheit und/oder 3. systolischer Blutdruck ≤ 100 mmHg. Außer qSOFA gibt es weitere Screeningtools (National Early Warning Score [NEWS], Modified Early Warning Score [MEWS]) → siehe Internet!

<u>Memo:</u> Die SIRS-Kriterien (systemic inflammatory response syndrome = generalisierte Entzündungsreaktion) von Sepsis-1, -2 als Frühwarnsystem einer Sepsis wurden bei Sepsis-3 ersetzt durch den qSOFA als Risikoabschätzung für Organversagen und Intensivtherapiepflichtigkeit. Ca. 1/3 der Fälle nach Sepsis-1, -2 werden nach Sepsis-3-Definitionen nicht mehr als septischer Schock erfasst. Die Sepsis-3-Definition mit Organdysfunktion mit > 10 % Letalitätsrisiko kann die frühe Erkennung und Behandlung einer Sepsis daher verzögern. Daher weiterhin Sepsis-1-, -2-Definitionen verwenden: <u>Sepsis</u> = SIRS + Infektion.

Klinische Manifestation SIRS: ≥ 2 Symptome: 1.) Temperatur > 38 °C / < 36 °C, 2.) Herzfrequenz > 90/Min 3.) Atemfrequenz > 20/Min / PaCO₂ < 32 mmHg, 4.) Leukozyten > 12.000/mm³ / < 4.000/mm³; > 10 % unreife Granulozyten (Stäbe); schwere Sepsis = Sepsis + Organdysfunktion; septischer Schock = Sepsis + Vasopressor-abhängige Hypotension trotz adäquater Flüssigkeitssubstitution.

Ep.: - Inzidenz der Sepsis in Deutschland ca. 160 - 270/100.000 pro Jahr, Krankenhausletalität ca. 42 %

- Prävalenz schwere Sepsis/septischer Schock auf Intensivstationen 18 % (INSEP-Studie)
- Assoziation mit jedem 5. Todesfall, an 3. Stelle der Sterblichkeitsstatistik, Anteil nosokomialen Ursprungs ca. 24 %. Jährlich erkranken weltweit 48,9 Millionen an einer Sepsis und ca. 20 % aller Todesfälle sind sepsisinduziert.
- <u>Hauptursachen der Infektionen: Pulmonal</u> (ca. 36 47 %), <u>intraabdominal</u> (ca. 29 36 %), <u>urogenital</u> (ca. 12 -14 %), <u>Haut und Weichteile, Fremdmaterial</u> (ca. 10 %), primäre Bakteriämien (ca. 1,5 2,2 %). Blutkulturen in 20 40 % positiv, 1/3 der Kulturen vom potentiellen Infektionsort negativ.

Häufigste Erreger (siehe ARS - Antibiotika Resistenz Surveillance [www.rki.de])

- Gramnegativ: Escherichia coli, Klebsiella, Pseudomonas aeruginosa
- Grampositiv: Staphylococcus aureus + epidermidis, Enterococcus, Streptococcus pneumoniae

- S. aureus-Nachweis in Blutkulturen bedeutet fast immer <u>S. aureus-Blutstrominfektion</u> (<u>SABSI</u>) und praktisch nie Kontamination, in 10 15 % Methicillin-resistente Stämme (MRSA). Häufigste Eintrittspforten: Infizierte intravaskuläre Katheter (ZVK, Port, PVK), Respirationstrakt.
- S. aureus im Urin bei SABSI infolge einer sekundären Ausscheidung über die Nieren in ca. 15 %. Endokarditis in > 5 % (nosokomiale SABSI) ggf. mit septisch-embolischen Komplikationen (z.B. Osler-Knötchen), Knochen- und Gelenkinfektionen, Spondylodiscitis, Meningitis, Abszesse in parenchymatösen Organen.
- Pg.: Patienten mit einer Sepsis sind sehr heterogen: 1. auf der Pathogenseite: Quelle der Infektion und auslösende Mikroorganismen (Menge und Virulenz) und 2. auf der Wirtsseite: Alter, Geschlecht, genetischer Hintergrund, Komorbiditäten, chronische Medikation, Lebensführung. PIRO-Konzept: Prädisposition, Infektion, Patientenantwort auf Infektion (Response), Organdysfunktionen. Daraus resultiert hohe Variabilität bezüglich Immunantwort, Überlebensrate und Nutzen potentieller Therapien. Junge Patienten häufig "klassische Sepsis" mit SIRS. Ältere Patienten "nicht-klassische Sepsis" mit Organdysfunktion durch Hypoinflammation und andere Faktoren, wie Immunsuppression, chronische Erkrankungen. Durch Hyperinflammation bedingtes Organversagen häufigster Grund für frühes Versterben. Persistierende Inflammation, Immunsuppression und kataboles Syndrom (Post intensive care syndrome = PICS) sind Ursachen für sekundäre Infektionen auf Intensivstation.

Pathophysiologie der Organschädigungen: "Four Hit Model":

- "first hit" = akute Verletzung/akuter Infekt (z.B. Pneumonie)
- "second hit" = Multiorgandysfunktionssyndrom (z.B. Ischämie-Reperfusion, toxische Sauerstoffmetabolite, Verlust kapillärer Endothel-Barrierefunktion)
- "third hit" = global increased permeability syndrome (GIPS)
- "fourth hit" = negative kumulative Flüssigkeitsbilanz und resultierende Hypovolämie (oft iatrogen). Entscheidender Wendepunkt: 3. Tag nach Schockbeginn. Auf distributiven Schock (arterielle Vasodilatation + transkapillärer Albuminverlust) folgen hämodynamische Stabilisierung mit "Verschließen" kapilläres Leck, Wiederherstellung Diurese + Mobilisation extravaskulärer Flüssigkeit.

KL.: Diagnostische Kriterien für Sepsis und septischen Schock: Siehe Sepsis-3-Definition

Diagnosiosi i interiori iai copeio ana copilosi con con copilo copeio copilo i				
SOFA-Score-Punkte	1	2	3	4
<u>Lunge</u>				
Pa0 ₂ /FiO ₂ , mmHg	< 400	< 300	< 200	< 100
(Horovitz-Quotient)			mit maschineller Beatmung	
Gerinnung	< 150	< 100	< 50	< 20
Thrombozyten x 10 ³ /mm ³				
<u>Leber</u>				
Bilirubin, mg/dl	1,2 - 1,9	2,0 - 5,9	6,0 - 11,9	> 12,0
µmol/l	20 - 32	33 - 101	102 - 204	> 204
<u>Herz/Kreislauf</u>	MAP < 70	Dobutamin	Adrenalin ≤ 0,1 oder	Adrenalin > 0,1 oder
Hypotension	mmHg	(jede Dosierung)*)	Noradrenalin ≤ 0,1*)	Noradrenalin ≥ 0,1*)
<u>ZNS</u>				
Glasgow Coma Scale	13 - 14	10 - 12	6 - 9	< 6
Niere, Kreatinin mg/dl	1,2 - 1,9	2,0 - 3,4	3,5 - 4,9	> 5,0
µmol/l	110 - 170	171 - 299	300 - 400	> 440
oder Diurese			oder < 500 ml/d	oder < 200 ml/d

^{*)} Adrenerge Substanzen für mind. 1 h (Dosierung in µg/kg KG x Min)

Ko.: Mehrorgandysfunktion (reversibel) bzw. Mehrorganversagen (irreversibel) Fulminante Verlaufsformen der Sepsis:

- <u>Meningokokkensepsis</u> (petechiale Hautblutungen und Verbrauchskoagulopathie, evtl. mit bilateraler Nebennierennekrose "Waterhouse-Friderichsen-Syndrom")
- Sepsis nach Splenektomie (siehe OPSI-Syndrom)
- Landouzy-Sepsis: Septische Verlaufsform der Tuberkulose bei Immunsuppression
- Toxic shock syndrome (TSS)
 - <u>Staphylokokken-assoziiertes TSS</u> durch TSS-Toxin 1 bei vaginaler Infektion, z.B. "Tampon-assoziiertes Schocksyndrom" (Bildung Exotoxin C, Enterotoxin F); gynäkologisches Konsil
 - <u>Streptokokken-assoziiertes TSS</u> durch Enterotoxine von Bakterien der Gruppe A-Streptokokken bei nekrotisierender Fasziitis oder Myositis (chirurgisches Konsil!)
- <u>DD:</u> Bei hypovolämischem Schock ZVD ↓, bei Herzversagen meist †! Volumenmangel: Kollabierte Venen; kardiogener Schock: Gestaute Venen. Gut zu beurteilen: Venen Zungengrund und Hals
- <u>Di.:</u> Siehe Definition und Klinik. Echokardiographie mittels TEE bei allen SABSI-Patienten. Falschnegative TTE-Befunde in bis zu 20 %! DUKE-Kriterien der Endokarditis beachten (siehe dort).

<u>Th.:</u> Die <u>SSC 2021-Empfehlungen</u> sind die Basis für das Management der Patienten nach den Sepsis-3-Definitionen, wobei sie auf personalisierte Versorgung adaptiert werden.

Als Ausführungsvereinfachung dienen <u>Sepsis-Bündel</u>, eine Auswahl der SSC 2016-Interventionen, die zusammen angewendet einen größeren Effekt als jede einzelne Intervention haben.

SSC - 1 h Bündel:

- Laktatmessung (Marker der Gewebehypoperfusion), Wiederholung, falls initiales Laktat > 2 mmol/l
- Blutkulturen vor Gabe von Antibiotika
- Gabe von Breitspektrum-Antibiotika
- Beginne schnelle Infusion von 30 ml/kg Kristalloide bei Hypotension oder Laktat ≥ 4 mmol/L
- Vasopressoren, falls Patient hypotensiv während/nach Flüssigkeitsgabe, um MAP ≥ 65 mmHg Bei persistierender Hypotension Volumenstatus und Gewebeperfusion überprüfen.

SSC 2016-/2021-Empfehlungen:

Empfehlungsgrade + Qualität der Beweislage der SSC 2021-Empfehlungen für und gegen Maßnahmen: strong (s), moderate (m), low (l), very low (vl), best practice statement (BPS), no (n)

A. Screening: Routine-Screening potentiell infektiöser Schwerkranker im Krankenhaus

B. Initiale Wiederherstellung Perfusion

- Sepsis und septischer Schock sind medizinische Notfälle: Sofortige Therapie

- ≥ 30 ml/kg KG i.v. Kristalloide < 3 h, bei Hypotension oder Schock, danach titrierte personalisierte Flüssigkeitszufuhr, Monitoring des Ansprechens: Kapillarfüllungszeit, Fußhebetest (passive leg raising test), funktionelle hämodynamische Messungen, wie Schlagvolumen-Variabilität (SVV) oder Pulsdruck-Variabilität (PPV), Laktatwerte normalisieren sich bei verbesserter Gewebeperfusion.</p>
- C. <u>Arterieller Mitteldruck:</u> Initial Ziel-MAP = 65 mmHg im septischen Schock bei Vasopressorengabe
- D. Aufnahme auf Intensivstation < 6 Stunden bei Sepsis und septischem Schock:

E. Infektion

- Geeignete mikrobiologische Kulturen von klinisch indizierten Orten vor Antimikrobiotikagabe, ≥ 2 Blutkultursets (aerob + anaerob); danach ohne signifikante Verzögerung Antimikrobiotika
- Antimikrobielle Therapie (entspricht Tarragona-Strategie: "look at your patient, listen to your hospital, hit hard and early, focus, focus, focus")
- Initial kalkulierte Breitspektrum-antimikrobielle Therapie i.v. (< 1 h septischer Schock; < 3 h wenn Sepsis diagnostisch wahrscheinlich bleibt) möglicher Pathogene (Bakterien, Pilze, Viren), täglich Reevaluation; MRSA-wirksame Antibiotika nur bei Patienten mit hohem MRSA Risiko
- Antifungale Therapie nur bei hohem Risiko für Pilzinfektionen
- Antimikrobielles Regime nach Keimidentifikation / klinischer Besserung deeskalieren
- Dosierung optimieren nach pharmakokinetischen/pharmakodynamischen Prinzipien
- Therapeutisches Drug Monitoring (TDM) zur Individualisierung
- 5 10 Tage antimikrobielle Therapie meist ausreichend, eher kürzer als länger
- Längere Dauer antimikrobieller Therapie bei langsamem klinischen Ansprechen, nicht drainierbarem Fokus, <u>Staphylococcus aureus-Bakteriämie</u> (Therapie: siehe Endokarditis), einigen Pilzen und Viren, Immundefizienzen. Bei SABSI tgl. Blutkultur (BK) bis erste negative BK. "Unkomplizierte SABSI" (vollständige Fokussanierung, keine Endokarditis, keine Knochen-/Gelenkbeteiligung, Bakteriämiedauer ≤ 5 Tage): Therapiedauer 14 Tage (i.v.) ab erster negativer BK. "Komplizierte SABSI": Therapiedauer mindestens 28 Tage.

Cave: Bei zu kurzer Therapie hohe Rezidivgefahr!

- Procalcitonin-Bestimmungen UND klinische Einschätzung, um Dauer zu verkürzen
- Anatomische Zuordnung oder Ausschluss der Infektion und Intervention zur Fokussanierung so schnell wie medizinisch und logistisch möglich (< 6 h Letalität ↓)
- Zügige Entfernung infizierter Katheter und von Fremdmaterial

F. Hämodynamisches Management

- Volumenbelastung solange hämodynamische Verbesserung nachweisbar ist.
- Kristalloide initial + anhaltend erste Wahl, balancierte Lösungen empfohlen, kein NaCl 0,9 %
- Ggf. Albumin bei hohem Bedarf an Kristalloiden, kein HÄS, keine Gelatine. Konservatives, auf den distributiven Schock folgendes Flüssigkeitsmanagement mit negativer Bilanz an 2 aufeinander folgenden Tagen innerhalb der ersten Woche ist ein unabhängiger Prädiktor für das Überleben. Patienten, die nicht spontan ausschwemmen: Aktiver Flüssigkeitsentzug (late goal directed fluid removal) mit Diuretika (Furosemid) bzw. Nierenersatzverfahren.

Cave: Bei Sepsis-Patienten, die am ersten Tag 5 bis > 9 Liter Flüssigkeit erhielten, stieg mit jedem zusätzlichen Liter über 5 Liter die Letalität um 2,3 %.

Noradrenalin ist Vasopressor der 1. Wahl

- Ggf. zusätzlich zu 0,25 0,5 μg/kg/Min Noradrenalin Vasopressin (bis 0,03 U/Min), dann zusätzlich Adrenalin, bei myokardialer Dysfunktion Adrenalin / Dobutamin Kein Terlipressin, Dopamin, Levosimendan
- Allen Patienten mit Vasopressoren möglichst arteriellen Katheter legen, Beginn Vasopressoren ohne Verzögerung über peripheren Zugang proximal der Fossa antecubitalis, < 6 h ZVK

G. Beatmung

- Highflow Nasenkanüle (HFNC) der Nicht-invasiven Beatmung (NIV) vorziehen
- Maschinelle Beatmung mit und ohne akute Lungenschädigung (ARDS): Atemzugvolumen 6 ml/kg, Spitzendruck ≤ 30 cm H₂O; eher höherer positiver endexpiratorischer Druck (PEEP); Rekrutierungsmanöver bei der Beatmung (tiefe Atemzüge)
- Moderates schweres ARDS: Bauchlagerung > 12 h, bei Bedarf intermittierend Muskelrelaxantien
- Sedierung, Analgesie: Kontinuierliche oder intermittierende Sedierung minimieren
- Schweres ARDS ggfs. veno-venöse extrakorporale Membranoxygenierung (vvECMO)

H. Zusätzliche Therapien

- Steroide: 200 mg/d Hydrocortison i.v. nur bei persistierendem Schock trotz adäquater Volumengabe und Vasopressoren, wenn Noradrenalin/Adrenalin ≥ 0,25 μg/kg/Min ≥ 4 h, Risiko von Hyperglykämie, Hypernatriämie (↓ bei Hypernatriämie, ggf. nur 30 60 mg/d nötig, da Abbau im Schock ↓)
- Blutwäsche: Keine Polymyxin-B-Hämoperfusion; keine Empfehlung für andere Techniken
- Blutprodukte: Substitution Erythrozyten nur bei Hb < 7 g/dl, wenn keine Herzischämie, schwere Hypoxämie, Blutung, Tumoren; kein Erythropoietin, FFP bei Blutung/invasiven Prozeduren, Thrombozytengabe bei Thrombozyten < 10.000/µl ohne, > 50.000/µl mit Blutung
- Immunglobuline: Nein
- Stressulkus-Prophylaxe: Nur mit Risikofaktoren, Protonen-Pumpen-Inhibitor oder H2-Blocker
- Prophylaxe tiefer Venenthrombosen: Niedermolekulare Heparine (LMWH, *Cave* Niereninsuffizienz) > unfraktioniertes Heparine (UFH)
- Nierenersatzverfahren (NE): Kontinuierlich oder intermittierend bei AKI; kontinuierliche bei hämodynamisch instabilen Patienten; keine NE lediglich bei Kreatininanstieg oder Oligurie
- Glukose-Kontrolle: BZ-Management, wenn 2 x > 180 mg/dl, Ziel: BZ 144 180 mg/dl, BZ-Kontrolle alle 1 2 h, wenn stabil alle 4 h (W)
 - **Cave:** Fehleinschätzung mit BZ-Schnelltestgeräten möglich: Falsch zu hoch, daher Gefahr der nicht erkannten Hypoglykämie.
- Bikarbonattherapie: Nur bei metabolischer Azidose pH ≤ 7,2 und Acute Kidney Injury (AKI, AKIN Score 2 oder3)
- Ernährung: Keine parenterale Ernährung, wenn enteral möglich, alleine/in Kombination mit enteraler < 7 d, falls enteral nicht realisierbar; frühe vorsichtige enterale Ernährung, in ersten 72 h falls toleriert; Prokinetika bei gastrointestinaler Intoleranz

I. Langzeit Outcome und Behandlungsziele

- Festlegen von Behandlungszielen: < 72 h, Prognose und Ziele diskutieren mit Patient + Angehörigen, End-of-Life-Konzepte und Palliativmedizinprinzipien miteinbeziehen
- Auf Selbsthilfegruppen für Überlebende verweisen, ökonomische und soziale Unterstützung
- Entlassmanagement: Aufklärung über Post-Intensivstation/Post-Sepsis-Syndrom, Abstimmung Medikation vor und nach Intensiv-/Krankenhausaufenthalt, Unterstützung bei neuen und Langzeitfolgen, kognitiven, physischen und psychischen Problemen, Reha-Programmen

Prg: Letalitätsrisiko bei Sepsis > 10 %; bei septischem Schock > 40 % nach Sepsis-3-Kriterien. Die Hälfte der Überlebenden erholt sich, 1/3 verstirbt < 1 Jahr, bis 3/4 < 4 Jahre, 1/6 behält andauernde Beeinträchtigungen. Ca. 40 % Wiederaufnahme nach Krankenhausentlassung < 90 Tage. Bei ca. 30 - 40 % Sepsis-Überlebenden Critical Illness Polyneuropathy (CIP), CI Myopathy [CIM] (bis 100%), neurokognitive Einschränkungen, Angst, Depressionen, Posttraumatic Stress Disorder (PTSD = PTBS). Auch 2/3 der Angehörigen von Überlebenden leiden unter PTSD.

Marmorierungs-Score als Maß für periphere Gewebsminderperfusion (Mottling-Score) korreliert mit Überleben: Score 0 = keine, 1 = Münzgröße; 2 = nicht oberhalb Kniescheibe, 3 = nicht oberhalb Mitte Oberschenkel, 4 = unterhalb des Leistenbandes, 5 = oberhalb des Leistenbandes.

<u>Cave:</u> Hyperlaktatämie erhöht unabhängig vom Vasopressorbedarf das Letalitätsrisiko. Sepsis und septischer Schock sind die dritthäufigste Todesursache im Krankenhaus! Jeder Zeitverlust vor Beginn einer effektiven Therapie verschlechtert die Prognose!