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ABSTRACT

This thesis presents a newly developed theory for the formation and main-
tenance of eddy-driven jets in planetary turbulence. The novelty is that jet
formation and maintenance is studied as a dynamics of the statistics of the flow
rather than dynamics of individual realizations. This is pursued using Stochastic
Structural Stability Theory (S3T) which studies the closed dynamics of the first
two cumulants of the full statistical state dynamics of the flow by neglecting
or parameterizing the third and higher-order cumulants. S3T is an analytical,
predictive and quantitative theory for turbulence that proceeds directly from the
equations of motion and provides a way of finding turbulent statistical equilibria
and determining their stability. Instability of the statistics of the flow signifies
transition of the turbulent regime to a new regime.

With this statistical closure large-scale structure formation is studied in
barotropic turbulence on a [-plane. By studying the dynamics of the statis-
tical state novel phenomena are predicted such as: the instability of homogeneous
turbulence to jet formation, the establishment of turbulent equilibria, the predic-
tion of multiple turbulent equilibria, jet merging bifurcations, and the existence
of latent jets. Although these phenomena cannot be predicted by analysis of the
dynamics of single realizations of the flow, it is demonstrated that the predictions
of the statistical theory are reflected in individual realizations of the flow.

It is further demonstrated that at analytically predicted critical parameter
values the homogeneous turbulent state undergoes a bifurcation and becomes
inhomogeneous with the emergence of large-scale zonal and/or non-zonal flows.
The mechanisms by which the turbulent Reynolds stresses organize to reinforce
infinitesimal mean flow inhomogeneities, thus leading to this statistical state insta-
bility, are extensively studied for various regimes of parameter values (planetary
vorticity gradient, dissipation rate and turbulent energy injection rate) and it is
shown that for small and modest values of planetary vorticity gradient, [, the
upgradient fluxes responsible for the formation and maintenance of large-scale
structure are induced by the Orr mechanism, while for large 8 by resonant wave
triads. It is demonstrated that the S3T instabilities equilibrate to finite amplitude
jets, in agreement with the jets that develop in individual simulations. The
relation between the formation of large-scale structure through modulational
instability and the S3T instability of the homogeneous turbulent state is also
investigated and it is shown that the modulational instability results are subsumed
by the S3T results.

The study of the S3T stability of inhomogeneous turbulent jet equilibria is also
presented and the relation with the phenomenon of jet merging is investigated.
Methods for finding inhomogeneous statistical turbulent equilibria and also for
studying their stability are developed.
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Introduction

Figure 1.1: The atmospheres of planets Jupiter and Earth are turbulent. The turbulence is
anisotropic and inhomogeneous and the kinetic energy of the flow is concentrated in large-scale
zonal or wavy jets and large-scale vortices which persist in the flow enhancing the large-scale
long time range predictability of the flow. Credits: NASA/JPL and NASA/GSFC.

1.1 JETS ON EARTH AND JUPITER

Turbulent atmospheric flows in rotating planets are observed to self-organize into

large-scale structures. These structures vary at a time scale much larger compared



to the turbulent eddy motions with which they coexist. Prominent characteristic
examples are the Earth’s subtropical and polar jet streams or the zonal winds
in Jupiter and its Great Red Spot (see Fig. 1.1). Changes in the structure or
the position of the Earth’s jet streams may induce dramatic changes in regional
weather patterns. Recent such examples are the 2003 and 2010 European heat
waves and the 2013-14 North American cold wave that were caused by shifts in
the position of the jets.

Jet streams (or jets) are strong and narrow quasi-rectilinear air currents found in
the atmospheres of some planets. In the Earth there are two jets in each hemisphere
that flow eastwards. The typical structure of the mean zonal winds over the Pacific
ocean reveals the double jet structure in each hemisphere (cf. Figs. 1.2a,b). In a
frame rotating with the Earth the jets have typical speeds of 40 ms™" (145 kmh™!)
and may reach 70 ms~! (250 kmh™!) in the winter of each hemisphere. The wind
maximum of the subtropical jet is located at around 30°N/S and at a height of
10-16 km (or at a pressure of 200 mb). The polar jet is located at 40°-60°N/S and
at a height of about 10 km (300 mb). The weaker subtropical jet is much more
axisymmetric while the stronger polar jet has a pronounced slowly translating
non-zonal wave component, especially in the Northern Hemisphere, as shown in
Fig. 1.1, with the jet maxima distributed over an annular region as depicted in the
schematic of Riehl (1962) in Fig. 1.2c. Due to its spatial and temporal variation
the polar jet stream does not appear as a prominent feature in plots of the annual
mean zonal velocity. For example, in Fig. 1.3a only the subtropical jets appear.

While little information is known about the vertical structure of the winds
on Jupiter! there is a lot of information about the latitudinal structure of the
winds at cloud level (about 700 mb) obtained from involved cloud tracking
techniques. These measurements revealed the existence of an alternating jet
structure consisting of 15 eastward and 15 westward jets located at the latitudes
that separate the colored belts of the planet (cf. Fig. 1.4a,b). Near the equator the
speed of the eastward zonal jet exceeds by 120 ms~' (430 kmh™1) the rotational
speed of the planet, indicating that the Jovian atmosphere has an appreciable
superrotation at the equator. Moreover, the jets of Jupiter seem to vary very
slowly despite being embedded in strong turbulent flow. This remarkable fact

was discovered when the wind measurements made by Voyager 2 and the Cassing

!Preliminary evidence suggests that the jets increase below the clouds (Atkinson et al., 1997).
Definitive answers are expected from analysis of the gravitometric measurements that will be
collected by space probe Juno (Kaspi, 2013; Read, 2013).
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Figure 1.2: Earth’s jet streams: Shown are pressure (mb)-latitude sections of the mean zonal
wind (ms™') and divergent circulation averaged over (a) the west Pacific (120°E-170°E) and (b)
the east Pacific (130°W-180°W). Shown are time averages for May 2014. Divergent circulation is
represented by vectors of combined pressure vertical velocity and the divergent component of the
meridional wind.) Red (blue) shading and solid (dashed) contours denote eastward (westward)
zonal wind. The eastward wind maxima at around 30°N/S correspond to the subtropical jet
streams while the maxima at higher latitudes to the eddy-driven polar jet streams. (Credit:
NWW, Climate Prediction Center.) (c) The mean position of the subtropical jet (thick solid
line) and the region (shaded) of principal polar jet stream activity for the northern hemisphere
(Taken from Riehl (1962)).
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Figure 1.3: Zonal mean cross sections of (a) the zonal wind component, %, (ms™ '), (b) the
meridional wind component, @, (ms™') and the inferred flow of atmospheric mass (10*° kgs™")
for annual-mean and zonally averaged conditions. (Brackets denote time average.) (Taken from
Peixéto and Oort (1984).)



Figure 1.4: Jupiter’s jets: (a) A cylindrical projections of Jupiter from Cassini images
(Credits: NASA/JPL/Space Science Institute). (b) The zonal wind speeds measured by Limaye
(1986) on Voyager 2 images taken on 1979 (red curve) and by Porco et al. (2003) on Cassini
images taken on 2000 (black curve). (Taken from Porco et al. (2003).) (c¢) A zoom at the
eastward jet found at 24°N. (Taken from Sénchez-Lavega et al. (2008).)

Figure 1.5: The Intertropical Convergence Zone (ITCZ) over the eastern Pacific on 12
July 2000 becomes visible by the nearly zonal cloud band. The major convective activity that
drives the upwelling of the Hadley cell has been organized to occur in this narrow zone. Credit:
NASA/GOES.

space probes were analyzed and were found to produce nearly identical winds,
although 20 years intervened between the measurements. The respective wind
measurements made by the two probes are shown in Fig. 1.4b. Also, the jets
have a very special shape: the jet maxima (the superrotating flow) are very
pointed while the westward jets (the subrotating flows) are weaker and blunted
(cf. Fig. 1.4c). This thesis will provide an explanation for both the constancy of
the zonal winds and their shape.

In the Earth, the subtropical jet stream is driven by the large-scale merid-
ional circulation (see Fig. 1.3c) initiated by the enhanced convective activity
which is concentrated in a narrow zonal band near the equator, called the ITCZ
(Intertropical Convergence Zone) (cf. Fig. 1.5). This axisymmetric circulation

produces a nearly angular momentum conserving zonal flow by transferring angu-



lar momentum from the deep tropics to the poleward upper part of the Hadley
cell, where the subtropical jet maximum is located (Fig. 1.3c). The polar jet is
maintained from the momentum convergence of the turbulent motions, which
themselves owe their existence to the very jet they support. It should be clari-
fied that the turbulent motions responsible for the maintenance of the polar jet
is the midlatitude turbulence, with typical length scales of 1000 km and time
scales of a week. This large-scale atmospheric turbulence is often referred to
in the meteorological literature as the macroturbulence (Held, 1999; Schneider
and Walker, 2006). While the dynamics of the subtropical jet has been fully
elucidated (Schneider and Lindzen, 1977; Held and Hou, 1980; Lindzen and Hou,
1988), the theory for the formation and maintenance of the eddy-driven jets is
far from complete. This thesis will present a new theory for the formation and
maintenance of eddy-driven jets in planetary turbulence.

The idea that smaller scale turbulence transfers momentum and maintains larger
scale flows, thus fluxing momentum upgradiently, is provocative and has been
called in the literature, equally provocatively, a “negative viscosity” phenomenon
(Starr, 1953). This idea, expressed in this manner, seems to violate the natural
entropic tendency of physical systems towards states of greater disorder, which
is consistent with the usual downgradient action of diffusion: for example, as
Reynolds (1883) has shown, high density ink is spread and homogenized by
turbulent flow. Interestingly, as we will discuss shortly, it has been shown that the
fine-grain maximum entropy states in barotropic flows correspond to macrostates
with large-scale jets and vortices (Miller, 1990; Robert and Sommeria, 1991;
Bouchet and Venaille, 2012).

Jeffreys (1926) was the first to propose that large-scale atmospheric circulation
is eddy-driven. Until then people were trying to obtain understanding of the
general circulation of the atmosphere neglecting the non-axisymmetric dynamics
of the flow as well as the effect of the mean quadratic eddy stresses (the divergence
of the Reynolds stresses) on the mean axisymmetric circulation. Jeffreys demon-
strated that an exclusively axisymmetric point of view is inadequate by analyzing
the zonally averaged momentum balance of a whole column of air located at
the midlatitudes with westerly (or eastward) winds at the ground. Since the
momentum of the whole column (about 10° N's per m?) is lost at the ground at
the rate of 0.1 Nm™2 (this is the surface drag), it can be shown that it cannot be
replenished by the flux of momentum by the observed mean axisymmetric circu-

lations, and thus he concluded that the surface westerlies had to be maintained



by the horizontal convergence of momentum from the non-axisymmetric motions
(the eddy motions), i.e., he argued that the horizontal momentum divergence
of the non-axisymmetric motions must be responsible for maintaining the mean
momentum of the column and also for the westerlies at the ground.? The paper
of Jeffreys introduced the idea that the eddy motions in the atmosphere (the
cyclones) should not be viewed as unstable perturbations to the axisymmetric
mean circulation but rather as an integral component for the maintenance of the
very axisymmetric circulation that gives rise to them (for a historical discussion
cf. Lorenz (1967)). Jeffreys also stressed for the first time that the horizontal
eddy barotropic dynamics are responsible for the maintenance of the large-scale
structure. This point of view was further advanced and given a theoretical basis
by Rossby and collaborators (1947a,b). In the meanwhile the detailed upper
air observations, that became available after the Second World War, gave solid
observational support to the proposition that the Earth’s polar jet is supported
by barotropic upgradient momentum fluxes. Such modern measurements of the
momentum flux compiled by Peixéto and Oort (1984) are shown in Fig. 1.6. In

these plots the zonally averaged momentum flux 7o is decomposed as?

wo=uv+uv (1.1)
into the momentum flux due to the axisymmetric motions, w7, and the mean
momentum flux due to the eddies (the motions that deviate from axisymmetry),
w'v/. It can be seen in Fig. 1.6 that the eddy momentum fluxes are larger than the
momentum fluxes from the meridional circulations and dominate at the latitudes
of the polar jet. There is a large eddy momentum flux convergence around 55°N/S
and at 300 mb, precisely at the location of the polar jet, and at this location the
momentum fluxes from the axisymmetric motions is negligible, showing that the
polar jet is maintained by eddy momentum flux convergence. The second region
of convergence occurs at 30°N/S where the subtropical jet is located (cf. Fig. 1.6b).
The dominant flux convergence in this case is from the axisymmetric motions

indicating that the subtropical jet is a result of an axisymmetric circulation.

2 At the time of Jeffreys the existence of the polar jet was not known and in his 1926 paper
there is no mention of upper-level jets. Evidence of strong upper-level winds was obtained from
kite measurements first in Japan in the 1920’s, but the existence of the polar jet as a global
feature of the climatology was established from aircraft measurements during the Second World
War. The term “jet stream” was coined by Rossby in 1942 (Lewis, 2003).

3w is the zonal velocity with eastward flow being u > 0, v is meridional velocity with northward
flow corresponding to v > 0 and overbar denotes zonal average.
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Figure 1.6: Zonal mean cross section of zonal mean of northward flux of zonal momentum
(cf. (1.1)) by (a) the eddies, [W] (m?s7?) and (b) the mean meridional circulation, [T 7]
(m?s™2). Brackets denote time average for a period of a year. It is clear that the dominant
contribution comes from the eddies. Note the eddy momentum flux convergence occurs in the
location of the polar jet while mean meridional momentum flux converges at the location of the
subtropical jet. (Taken from Peix6to and Oort (1984).)

The Jovian jets are eddy-driven, like the Earth’s polar jets. This was confirmed
through systematic and repeated analysis of the turbulent velocity fields at cloud
level (Ingersoll et al., 1981; Ingersoll, 1990; Salyk et al., 2006; Galperin et al.,
2014). Ingersoll and coworkers demonstrated the upgradient action of the eddy
momentum fluxes by plotting the eddy momentum flux, u/v’, together with the
shear of the mean flow, du/dy, as a function of latitude. They noted that these
two quantities are positively correlated and to a great degree of accuracy satisfy

the linear law,

d
u'v' = md—Z , (1.2)

with £ ~ 10° m?s~!, as can be seen in Fig. 1.7. That x > 0 implies the remarkable
fact that the momentum fluxes on Jupiter act anti-diffusively, since the rate of

change of zonal momentum (disregarding dissipation) obeys

Ju 0 (W) _ d?*u (13)

%~ oy aE

which is a diffusion equation with negative diffusion coefficient.
1.2 THEORIES FOR JET FORMATION AND CURRENT UNDERSTANDING

Since atmospheric motions on Earth are confined in a thin shell 10000 km in the
horizontal and 10 km in the vertical (the mean depth of the troposphere, where

most of the mass of the atmosphere is located) the motions are quasi-horizontal
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Figure 1.7: The structure of the eddy momentum flux, [u/v’] (dots), and the zonal mean
flow shear, [du/dy] (solid), as a function of latitude. [u/v’] error bars correspond to 2 standard
deviations from the mean. There is a distinct positive correlation between the two curves. (Taken
from Salyk et al. (2006).)

and one would expect that barotropic dynamics, which involve only the height-
averaged flow fields, would be sufficient to describe the dynamics of the Earth’s
atmosphere. However, this is erroneous: the vertical shear of the mean zonal wind
(i.e. the derivative of the zonal wind with height), which is associated with the
temperature contrast between the Equator and the Pole, gives rise to powerful
baroclinic growth processes that produce the cyclones, which are the “atoms” of
atmospheric turbulence responsible for the transport of heat and momentum in
the atmosphere.

Interestingly, the cyclones grow first through the baroclinic process of drawing
potential energy from the mean flow and transporting in this way heat to the poles,
and then they assume a nearly barotropic structure (i.e. height independent).
The barotropic dynamics responsible for the redistribution of momentum in the
upper troposphere and the formation of jets is also referred to as the “barotropic
governor”, because this mechanism of barotropic exchange that forms the jets is
the very mechanism that alleviates the instability of the atmospheric flow and
maintains the atmosphere in a state of baroclinic neutrality (Ioannou and Lindzen,
1986; James, 1987; Lindzen, 1993; Roe and Lindzen, 1996). This duality in the
behavior of the baroclinically growing disturbances simplifies the study of jet
formation in baroclinic atmospheres. It allows us to consider that the atmospheric
dynamics fall into two manifolds: the slow barotropic manifold that controls the
formation and evolution of jets in the upper troposphere, and the faster manifold
of baroclinic processes that provides the necessary excitation of the barotropic
manifold to maintain it in a turbulent state. A confirmation of this point of view

has been given by DelSole (2001), who by considering that the upper troposphere



is governed by barotropic dynamics excited by the baroclinic activity from lower
levels demonstrated that the structure of the momentum fluxes responsible for
maintaining the upper level jets could be accurately captured. As a result, in
this thesis we will adopt the traditional view and study the formation of jets and
other large-scale structure both in the Earth and in Jupiter within the context of
barotropic dynamics.

This barotropic two-dimensional framework has been adopted by most re-
searchers that investigated jet formation in Jupiter and the outer planets starting
with Williams (1978) and more recently with Nozawa and Yoden (1997) and
Huang and Robinson (1998). Other authors investigated the formation of jets on
Jupiter in the primitive equation extension of the quasi-geostrophic barotropic
dynamics by modeling the Jovian atmosphere as a shallow-water fluid; but also in
these studies jet formation proceeded as in the purely two-dimensional barotropic
models (Cho and Polvani, 1996a,b; Scott and Polvani, 2007). That these dynamics
can produce jet formation has been also demonstrated experimentally by Read
et al. (2004) in the Coriolis rotating tank in Grenoble and by Espa et al. (2010) in
Rome. We adopt the simplest framework and study jet formation in Jupiter and
the outer planets in the context of barotropic dynamics that are maintained in a
turbulent state by external excitation. The excitation represents the introduction
of vorticity at cloud level from convective motions induced by the heating source
in the interior planet. The typical scale of vorticity injection is 1000 km (Little
et al., 1999; Gierasch et al., 2000).

We now review the main theories that have been advanced for understanding
the formation of jets in turbulence. These theories can be distinguished as those
that arise from turbulence theory and are generally phenomenological, and those
that consider that the flow perturbations are coherent, like a wave, and study the
interaction of this coherent eddy field with the mean flow. The latter theories
will be referred to as wave—mean flow interaction theories and are generally more

deductive.

1.2.1 TURBULENCE THEORIES

Jet formation in turbulence theory is viewed as a consequence of a cascade of
energy from small scales to large scales. This type of cascade is called “inverse”
and is the opposite of direct cascades that characteristically operate at small

scales in homogeneous isotropic 3D turbulence transferring energy from large



scales to small scales where it is dissipated. That turbulence confined on a
plane, like the barotropic turbulence that we will study, supports an inverse
cascade in energy was first proposed by Fjgrtoft (1953) who argued that this was
consequence of the two dimensionality of the flow which implies in the inviscid
limit the conservation of the total kinetic energy of the flow, E = [ 3|u|>dA4,
as in 3D, but also the conservation of the vorticity of every particle in the flow,
which leads to an infinite set of integral invariants. As a result, on the x-y plane
the material conservation of the vorticity ( = (V x u), = 0,v — Oyu, implies that
all integrals over the whole area of the fluid of the form | F(¢)dA, with F any
integrable function, are conserved. Enstrophy, defined as Z = [ %CQ dA, is the
invariant that is usually considered out of this hierarchy of conserved quantities
and Fjgrtoft considered the constraint imposed on the spectral evolution of the
flow by the simultaneous conservation of energy and enstrophy. Expressing the 2D
incompressible flow field through a streamfunction ¢ as u = (u, v) = (—=0y¥, 0,v),
implies that ¢ = (92, + 92,)¥, and expanding the streamfunction in Fourier as,
Y = (2m)72 [d%k Ui €%, we have that energy and enstrophy are respectively
given as E = (2m) 73 [ d%k [k|?|¢|? and Z = (27)~3 [ d%k |k|*|¢)x|2. This means
that the energy and enstrophy spectral densities that correspond to wavenumber
k, £(k) and Z(k) respectively, are related through Z(k) = k2£(k), where k = |k|.
Fjgrtoft stated that conservation of energy and enstrophy in 2D flows constrains
the energy exchanges between scales in such a manner so that if enstrophy moves
to smaller scales energy must move to larger scales.

However, these energy exchanges in the unforced, inviscid limit are reversible
in time and as a result no systematic direction of energy or enstrophy flow can
be deduced from these arguments (Salmon, 1998; Tung and Orlando, 2003b). In
irreversible forced—dissipative systems, it can be argued that energy should move
to large scales and enstrophy to small scales, as Fjortoft envisioned, namely from
the scale the energy or enstrophy is being injected towards the scale that each is
dissipated. Kraichnan (1967) provided such a refinement of Fjortoft’s argument,
which was further refined by Eyink (1996), by showing that energy and enstrophy
conservation imply an inverse energy cascade since if energy and enstrophy are
injected at a scale ky energy must be dissipated at a larger scale k. < ky and

enstrophy at a smaller scale, k, > kf.4 The physical mechanism that decreases

4Kraichnan’s argument: Assume that energy and enstrophy are injected at a scale ky at
rates 5 and ny = kj% €f, and that they are being dissipated at two distinct scales: a larger scale
kr (with k- < ky) at rates e, and 7,, and a smaller scale k, > ks at rates &, and 7, and that
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Figure 1.8: Evolution of the vorticity field in forced—dissipative flow on a doubly periodic
domain, 27 x 27. Energy is being injected in the flow at rate ey and at length scale 27 /k; with
ks = 40, and dissipation is done at small scales with 8th-order hyperdiffusion with coefficient
v =T7x107%. (a) Typical structure of the forcing field. (b) The vorticity field at time t/7 = 1265,
with 7 = (e fk?)_l/ 3. Vorticity patches tend to merge creating large-scale vortices which contain
most of the energy in the flow. As vortices are advected by the flow characteristic vortex filaments
are created transferring enstrophy to smaller scales. (¢) Velocity field at time ¢/7 = 1265. For
the simulation a pseudospectral code was used at a 256 X 256 resolution with an exponential
filter acting on wavenumbers k > %kmax, where kmax is the maximum resolved scale.

the mean scale of the enstrophy of the flow is the stretching of the vorticity as the
flow evolves. This is shown in a simulation of forced—dissipative 2D turbulence in
Fig. 1.8. Vortex filaments form increasing the vorticity gradients and transferring
enstrophy to smaller scales and, as has been argued by Fjgrtoft, energy to larger
scales in the form of large vortices.

Kraichnan (1967); Leith (1968); Batchelor (1969) (ofter abbreviated as KBL)
suggested that conservation of energy and enstrophy in 2D turbulence results
in the formation of two distinct inertial ranges: a range in which energy is
transferred upwards to larger scales and a range in which enstrophy is transferred
to smaller scales. Using Kolmogorov type non-dimensional arguments, which
assume that these ranges are homogeneous, isotropic and self-similar, they showed
that the energy density in the energy transferring inertial range should follow

the power law E(k) = ng/3k:_5/3, where ¢, is the energy transfer rate and C

there is almost no dissipation for k, < k < k,. At a statistical steady state we expect from
conservation of energy and enstrophy that, e = €, + €, and ny = 7 + 1, from which we obtain

eo 1= (k/k)? e (ko \ (kp\2 1= (ke ky)?
‘(m) () G (14

ki
Note that because all € and 7 are positive such a steady state is possible only if ks satisfies
kr < kf < ky, as it was assumed from the start . Moreover, if k, > ky then €,/e, < 1, which
means that that most of energy flux occurs at large scales k.. Also, if k» < ks then n,/n, < 1
implying that there is no enstrophy flux at large scale and all the enstrophy moves to small scale
ky.

e (ko/kp)2=1 " n,
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a dimensionless universal constant, while the energy density spectrum in the
enstrophy inertial subrange follows the power law £ (k) = C’ ng/ 31{:_3, where 7, is
the enstrophy transfer rate and C’ a different dimensionless constant. Evidence
of this scalings has been verified in numerical simulations, as shown in Fig. 1.9a.
Experiments with flowing soap films in which turbulence is excited by grids (arrays
of cylinders) lining the walls of the flow channel, provide a physical occurrence of
forced—dissipative 2D turbulence and confirm the predictions of KBL for the two
inertial ranges, as seen in Fig. 1.9b.

All these arguments however, are based on homogeneous and isotropic 2D
turbulence. It may be the case that large-scale processes in the atmosphere,
including jet formation, are essentially two dimensional, but overall the atmosphere
is neither isotropic nor homogeneous. Anisotropy in the atmosphere is induced by
the Earth’s rotation which distinguishes the zonal from the meridional direction
and also by the temperature difference between the Equator and the Pole, while
homogeneity is broken by the large-scale jets. Therefore one should use the
classical KBL 2D arguments with caution when trying to explain atmospheric
motions. Also, the observed atmospheric spectrum of the winds in the upper
troposphere, contrary to what the classical 2D picture would expect, shows
the k~5/3 dependance on the short-wave side of the spectrum at scales ranging
from 600 km down to 2 km, at the so called “mesoscales”, as seen in Fig. 1.9c.
Coincidentally, the direct energy cascade that is typically found at homogeneous
isotropic 3D turbulence and is responsible for transferring energy to the smaller
scales where is dissipated, also presents a k~%/3 dependance. However, the vertical
extend of the troposphere limits 3D effects in the atmosphere to appear only
at most at scales of 1-2 km and therefore the classical dimensional arguments
that are offered to account for the k53 inertial range scaling cannot apply
to the mesoscales. A concrete explanation for the atmospheric spectrum is an
open and challenging problem, which will not be addressed in this thesis. It is
interesting to note that if the atmosphere is represented crudely as a two-layer
fluid, which is one step of an approximation higher than the one adopted in this
thesis, the atmospheric spectrum of Nastrom and Gage (1985) is obtained (Tung
and Orlando, 2003a).

There is an additional problem with the predictions of the KBL theory in
planetary turbulence. While the existence of the inverse energy cascade could
provide an explanation for the emergence of the observed large-scale flows in

planetary turbulence, the theory predicts that the inverse cascade will lead to the
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Figure 1.9: (a) Spectral energy density E(k) vs total wavenumber obtained by numerical
simulation of forced—dissipative isotropic two dimensional turbulence, for different resolutions:
(A) 4096 x 4096 and (B) 32768 x 32768. Also shown are the k~°/3 (dashed) and k2 (dotted)
slopes. (After Boffetta and Musacchio (2010).) (b) Experimental spectral energy density at
steady state of flowing soap films in which turbulence was excited by grids (arrays of cylinders)
lining the walls of the flow channel, showing clear evidence of the dual inverse energy and
forward enstrophy cascade. The k~°/3 and k=3 slopes are also shown. (After Rutgers (1998).)
(¢) Variance power spectra of winds near the tropopause from commercial aircraft data (by
NASA GASP). The spectrum for meridional wind is shifted one decade to the right so it is
visible. (After Nastrom and Gage (1985).)
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formation of a large-scale condensate, as large as the geometry allows, as shown
in Figs. 1.8b,c. The structures that emerge in planetary turbulence however
are usually not at the largest scale of the flow and moreover they have a very
particular structure (see for example Fig. 1.4c). As a result if we are to provide a
theory for the emergence and maintenance of the large-scale structure in planetary
turbulence, we have to go beyond the classical KBL theory and consider the

implications of anisotropy and even inhomogeneity in 2D turbulence.

1.2.2 ROSSBY WAVES

Flows at rotating planetary atmospheres are anisotropic due to the preferential
direction imposed by the rotation. This has important implications to planetary
motions because it leads to a new class of exact solutions of the equations of
motions that were discovered by Rossby and are referred to as Rossby waves
(Rossby and Collaborators, 1939). Consider a fluid on the nearly spherical surface
of a rotating planet at angular velocity €2, where the magnitude Q = |€2] is the
rate of rotation of the planet (for the Earth Q = 7.27 x 107° rads™! = 27 (24h) 71,
for Jupiter Q = 1.76 x 10~* rads™! ~ 27 (10h)~!). The velocities of the fluid as
measured in an inertial frame of reference and as measured in a frame of reference
co-rotating with the planet are related by u;y = ugp + € x r, where subscripts 1
and R denote quantities measured in the inertial and rotating frame respectively.
That the velocity of the flow lies predominantly on the plane tangential to surface
of the sphere implies that the vorticity in the inertial frame, V x uy = (7 2, is
normal to the surface of the sphere (2 being the direction normal to the surface
of the planet as shown in Fig. 1.10). The magnitude of the vorticity, (;, is equal
to (;t = C(r + f, where (g = (V x ug) - 2 is the relative vorticity of the fluid and
f = (29Q) - z, is the planetary vorticity, which is also referred to as the Coriolis
parameter being the coefficient that multiplies the velocity in the Coriolis force
in the equations of motion in a rotating frame. Material conservation of vorticity

on this planetary surface implies that (7 is conserved, i.e.,

D& _ D

Dt_ﬁt(CR+f):(at+uR'V)(CR+f)=0, (1.5)

where D/Dt = 0; + u - V is the material derivative that determines the time
rate of change of flow properties as they move with the fluid, which is frame
independent when it acts on scalars. From hereafter we will drop subscripts R for

simplicity and, as it is usually done, all velocities will be considered to be relative
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Equator

S. Pole

Figure 1.10: A g-plane at latitude 6y approximates a zonal belt of the spherical surface
centered at 6y with a plane. The coordinate = in that plane corresponds to the zonal direction
on the sphere (circles of constant latitude 6) and the direction y is taken to correspond to the
meridional direction on the sphere (circles of constant longitude \).

to the rotating frame of reference.

The spherical shape of the planet implies that f = 2Qsinf and consequently
u- Vf = pv, with v the poleward velocity, 8 = (2Q cosf)/a, a the radius of the
planet and 6 the planet’s latitude (cf. Fig. 1.10). This S-term in the equations of
motions introduces a new class of anisotropic exact nonlinear solutions, discovered
by Rossby and Collaborators (1939), that will be of principal importance in this
thesis. Rossby further introduced the S-plane approximation that greatly simplifies
the equations of motions. Instead of solving for the barotropic dynamics (1.5) on
the surface of a sphere we approximate the domain as a planar surface tangent
to the surface of the sphere at latitude 6 rotating at the constant rate 2 sin 6.
The anisotropy due to the sphericity is then simply introduced by keeping only
the S-term in the equations of motion with 8 = (2Qcosfp)/a (at latitude 45°,
B=1.61x10"" m~!s~! on the Earth and 8 = 3.56 x 10712 m~!s~! on Jupiter).
Following the seminal work of Rossby and the multitude of theoretical work
that followed that employ the §-plane approximation in the study of midlatitude
planetary dynamics, we will also adopt in this thesis the S-plane approximation
for studying the formation of jets and other large-scale structure in planetary

turbulence.
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We present briefly the basic features of the Rossby wave solutions which will
be a central to this thesis. Expressing the two dimensional velocity in terms of a
streamfunction as u = z x V4, the barotropic vorticity equation (1.5) takes the
form

OpAp +J (¢, Ap) + B0, = 0, (1.6)

where J(g,h) = (0,9)(0yh) — (0y9)(0xh) is the Jacobian of functions g and h
and Ag = (07, + 97,)g the horizontal Laplacian. Equation (1.6) reveals that the

i(k-x—wt)

B-term supports the wave solutions ¢ = Ae , with wavevector k = (k,, ky)

and the frequency satisfying the anisotropic dispersion relation
Bk

w(k) = *m ; (1.7)
which is described geometrically in the manner of Longuet-Higgins (1964) in
Fig. 1.11. Being anisotropic, wavevectors k that correspond to frequency w do
not lie on a circle centered at the origin. Figure 1.11 demonstrates the important
property that Rossby wave packets have y-phase velocities opposite to their
y-group velocities.”

Remarkably, because these monochromatic Rossby waves satisfy J (¢, Ay) = 0,
they are also nonlinear solutions of (1.6). Moreover, stationary Rossby waves
with k, = 0 correspond to sinusoidal zonal jets with streamfunction 1) = A elFv¥
or more generally any zonal flow with ¢ = [ A(k,)e’*v¥ dk, is also nonlinear
solution of (1.6) (other nonlinearly valid Rossby wave solutions are presented in
Appendix G). We will demonstrate in this thesis that the emergence of large-scale
features in turbulent flow in the form of jets and other Rossby waves (or zonons)
can be traced to the property that exact nonlinear solutions can serve as good

repositories into which the eddy energy may “condensate”.

5For example in Fig. 1.19a, which will be discussed later, the phase lines in the region y > 3.6
are such so that the group velocity is directed towards the center of the channel. Also the phase
lines in the region y < 2.6 are configured so that group velocity is also directed towards the
center.
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Figure 1.11: (a),(c) Lines of constant phase of a Rossby wave with wavevector k subtending
an angle § = arctan(|ky|/|kz|) with the horizontal. (b),(d) The locus of wavectors k that
correspond to a fixed value of w > 0 is the circle shown with center at C' and radius 8/(2w).
Expressing (1.7) as w = (8/k) cos@ we find that the phase velocity is ¢? = (8/k?) (1,cot 0),
while the group velocity is ¢ = Viw = —(8/k?) (cos(20),sin(26)), in the direction WC'. The
y-component of the group velocity of the Rossby waves is always directed in the opposite direction
from the y-component of the phase velocity (phase and group velocity directions are drawn in

(a) and (c)).

1.2.3 ANISOTROPIC TURBULENCE ON A BETA-PLANE

The presence of Rossby waves affects the structure of turbulence in the degree that
the S-term dominates the advection term, J (1, At), in the vorticity equation (1.6).
The ratio of these terms is |3 9| /|J (¢, A))| = WRossby /Wiurb = O (B/(kQUrms)),
where wrosshy = O(B/k) is the Rossby wave frequency and wiyr, = kUpms is the
inverse of the shear time associated with nonlinear advection, with U, the
root-mean-square velocity of the flow at scale. It is reasonable to expect that
when Wresshy < Wiurh the B-term barely affects the turbulent dynamics. Since
WRossby increases while w1, decreases as k decreases, we expect only the large
scales to be influenced by 3. The wavenumber kry, = \/3/Urms at which the shear
time scale is equal to the Rossby wave period separates, according to Rhines, the
wavenumber space in two regions: a region of wave turbulence in which coherent
Rossby wave motions are manifest in the flow and nonlinearly interact as waves
and a region in which wave motions are not discernible, the flow is considered
incoherent and the nonlinear interactions are no longer constrained to be among

waves. The scale that separates these two regions is being referred to as the
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Figure 1.12: The interior of the dumbbell or lazy eight (shaded) is the region in which
Rossby waves are prevalent. According to Rhines (1975) the excitation of the Rossby waves
halts and anisotropizes the cascade, energy proceeds as shown towards the k; = 0 axis.

“Rhines’s scale” and the locus of the wavenumbers that satisfy the requirement
WRossby = Weurb 18 the popular and iconic dumbbell shape of Vallis and Maltrud
(1993), shown in Fig. 1.12, and which will be encountered in this thesis under a
different exegesis. Rhines (1975) argued that for scales larger than the Rhines’s
scale (k < kgp) the selectivity imposed to the nonlinear interactions by wave
turbulence, which allows interactions only among waves, retards the inverse energy
cascade and anisotropizes it. Rhines in this way explained that in anisotropic
[G-plane turbulence the inverse cascade should not be expected to proceed to the
largest scale available and is halted at kry. This led to the general prediction
that the large-scale structure in S-plane turbulence should have a characteristic
length scale of the order of 1/kgy.

Still unanswered remains how zonal jets finally emerge. Broadly speaking three
different approaches attempt to answer this question within Rhines’s phenomenol-
ogy. Rhines (1975); Vallis and Maltrud (1993); Chekhlov et al. (1996); Smith
and Waleffe (1999) argue that the cascade proceeds through local interactions
up to the dumbbell where the cascade process is halted and the upscale flow of
energy is directed to move tangentially along the dumbbell (in the direction of
the arrows in Fig. 1.12) towards the bottleneck at k, = 0, thereby forming jets.
Mclntyre, Dritschel, Scott and collaborators (Baldwin et al., 2007; Dritschel and
MclIntyre, 2008; Dritschel and Scott, 2011; Scott and Dritschel, 2012) argue that

jet formation is the inevitable and universal result of irreversible mixing of the
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potential vorticity (PV) of the flow, ¢ = ( + fo + By, that occurs in turbulent
flows, which tends to wipe out the large-scale PV gradients producing a flow
that approximately satisfies Vg = 0 or the large-scale flow satisfies 92, v = &%yu
and ﬁgyu — Ggyv = (. They further postulate that because the zonal direction,
x, is a homogeneous direction the resulting well mixed large-scale flows must
be independent of & and consequently irreversible mixing in the presence of 3
produces only mean zonal jets %(y) at large scale with a parabolic profile satisfying
d?w/dy? = B (as for example the central jet of Fig. 1.13b). Their argument has
however a further twist: there is an important feedback between Rossby waves
and turbulence that occurs in the boundary of the dumbbell. When waves are
strongly present the turbulent mixing is inhibited, while when the turbulence
is strongly nonlinear turbulent interactions iron out the PV gradient. In the
presence of a zonal jet, the effective Rossby restoring force (“Rossby elasticity”)
is not S but rather, )

Beff:jg(j:ﬁ_jyztv (1.8)
which means that in regions of eastward jet maxima Rossby wave excitation is
reinforced since fe > 8 and wWRresshy increases inhibiting mixing, while at westward
jet maxima the excitation of Rossby waves is not comparatively favored, since
Beft < B, and this leads to increased mixing of PV that reduces further the PV
gradient. These two effects result in inhomogeneous PV mixing in the anisotropic
y direction producing a staircase PV profile, as in Fig. 1.13a, with regions in
which the PV gradients have been severely reduced and the flow is retrograde
and parabolic and regions in which the potential vorticity gradient is very large
with very sharp prograde jets, as shown in Fig. 1.13b. It is remarked by Mclntyre
that the same interaction mechanism was proposed by Phillips (1972, 1977) in
order to account for the widespread occurrence of a succession of layers of uniform
stratification in the stratified ocean.

The observation that the maintained jets in planetary S-plane turbulence are
prograde jets joined with parabolic wind profiles is astute. It gives the shape of
the 24°N jet on Jupiter, shown in Fig. 1.4c, and of the equatorial retrograde jets
on Neptune and Uranus (see Fig. 1.14a,b). In numerical steady state simulations
of an almost inviscid turbulent flow on a doubly periodic S-plane channel Danilov
and Gurarie (2004) were able to produce the mean flow shown in Fig. 1.14c, which
almost exactly conforms to the above specification. With this successful prediction

it is very tempting to cease further effort and accept that the phenomenon of
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Figure 1.13: Jet formation through homogenization of PV, ¢ = ¢ + f. Shown are (a) zonal
mean PV profiles, § = fo + Sy — du/dy, and (b) the corresponding zonal mean flows, @. A linear
PV distribution (dashed) is associated with no zonal mean flow. Westward jets are associated
with regions of homogenized PV. These jets become stronger as the homogenization increases
(compare the jets associated with the dashed-dot PV partially homogenized distribution with the
staircase profile). Note that PV mixing theory implies that PV gradient should be everywhere
non-negative.

(©)

(a) e (b)

T
Uranus Neptune

60

301

=301

Planetocentric latitude (degrees)

-90

200 0 200 30 o 300 100 0 100 200
u(ms?) u (ms?) u,d{/dy

Figure 1.14: (a),(b): Observed zonally averaged zonal winds on (a) Uranus and (b) Neptune at
cloud level. Data taken from Voyager 2 (circles) and from Hubble Space Telescope measurements
(squares). Solid lines are empirical fits on the data. The equatorial retrograde jets in both planets
(up to approximately 25°N/S for Uranus and 35°N/S for Neptune) can be approximated very well
by a parabola. (Taken from Kaspi et al. (2013).) (c) Numerical simulation of forced—dissipative
turbulence on a S-plane with large-scale dissipation in the form of second order hypofriction,
—kA™2 Shown are the zonal mean vorticity gradient, d¢/dy, (thin line) averaged over 100
time units after the simulation has reached steady state and also zonal velocity, u, (thick line)
multiplied with 100 to fit the same axes. For the simulation a pseudospectal code at 512 x 512
resolution is used and turbulence is maintained against dissipation by energy injection in the form
of isotropic excitation at wavenumber ky. The parameters of the simulation are: Sky/x = 49
and e k}/k® = 7.7 x 10*. (Taken from Danilov and Gurarie (2004).)
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Figure 1.15: (a) A snapshot of the vorticity field of forced—dissipative turbulence on a S-plane
with the associated instantaneous zonal mean zonal flow, %, also indicated. The zonal mean flow
contains 45% of the total energy of the flow. (b) The energy spectrum of the zonal flow, Ez
(red), and the spectrum of the remaining energy, Er (blue). The turbulence is forced at the
scale ky and Egr develops the universal k~°/3 spectrum while the large scales develop a sharper
k~%-k~5 spectrum as expected from the near discontinuity of the prograde jets shown in (a). A
pseudospectal code was used at 512 x 512 resolution with 8/(ksr) = 42 and k?/rS =2.3x107,
with 7 the coefficient of linear damping. Also plotted are the k=%, k=2 and ko/3 slopes (dashed).
(Taken from Bakas and Ioannou (2019).)

jet formation has in essence been resolved by the above inhomogeneous mixing
arguments. However, the above arguments are phenomenological, qualitative,
descriptive and they do not comprise a deductive theory that proceeds from the
equations of motion. In this thesis we will present a predictive and quantitative
theory that proceeds directly from the equations of motion that can account
for the observations. Moreover, this theory leads to different conclusions about
the role of the physical processes that lead to jet formation. For example, it
will be shown that the tendency for jet emergence occurs even in the absence
of B (in fact 5 may actually retard the tendency for the emergence of jets) and
that § is required in order to obtain steady state and hydrodynamically stable
equilibrated flows, which requires that the PV gradient, dg/dy = 8 — d?u/dy?, be
of one sign (here positive) and as result in the retrograde parts of the flow, where
d?u/dy? > 0, the equilibrated flow must become parabolic satisfying 3 = d?a/dy?,
while the prograde jets can become infinitely sharp with no constraint other than
mean diffusive dissipation. The tendency towards discontinuity of the derivative
of the mean flow implies that the turbulent spectra at large scales have a k=%
power law behavior, which is not far from the observed k~%-k~° spectrum, shown
in Fig. 1.15. Note also that the demand that the mean flow does not violate the
Rayleigh-Kuo criterion for barotropic instability also sets the scale of the jets to
be nothing else but the Rhines’s scale (kg = 1/3/U) given that the maximum
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of the mean flow velocity U, rather than r.m.s. turbulent velocity, must at most
satisfy the condition k2U = /3. More basically, this scale should be expected to
emerge irrespectively of mechanism because it is the only length scale that can
be formed from the mean flow U (units LT™!) and 8 (units L™ T™1).

For scales within the dumbbell the S-term dominates over the advection term
and the flow is well approximated by a sea of weakly interacting Rossby waves. By
transforming (1.6) in Fourier space it can be shown that the nonlinear Jacobian
is transformed into a convolution with the property that Fourier component p
of the flow interacts with Fourier component q to produce Fourier component k
only if the wavevectors form a triangle, i.e., satisfy p + q = k. In the wave regime
however, the interacting Fourier components must produce a wave motion and
significant response is obtained only when the wavenumbers satisfy additionally

the resonant condition®:
w(k) =w(p) +w(q) . (1.9)

The turbulence that results from these resonant interactions among waves is
referred to as “weakly nonlinear turbulence” or “wave turbulence” (WT) (Za-
kharov, 1965; Zakharov et al., 1992; Hasselmann, 1966, 1967). Balk discovered
that Rossby waves in the WT regime do not only conserve energy and enstrophy
in the inviscid limit, but also new independent invariant. Balk with Zakharov and
Nazarenko have demonstrated that this additional invariant, which they named
“zonostrophy”, is responsible for the anisotropization of the cascades and leads to
the emergence of zonal jets (Balk, 1991; Balk et al., 1991; Nazarenko and Quinn,
2009; Balk and Yoshikawa, 2009).

Finally, a theory of very different character has been advanced for the emergence
of zonal jets which is based on the property that basic flows consisting of infinitely
coherent monochromatic Rossby waves are hydrodynamically unstable to zonal
jets (Lorenz, 1972; Gill, 1974). This instability is called a “modulational instability”
(MI) because of its similarity with the Benjamin-Feir instability of surface gravity
waves (Benjamin, 1967; Benjamin and Feier, 1967; Yuen and Lake, 1980; Zakharov

and Ostrovsky, 2009) and has recently resurfaced in relation to zonal jet formation

6Considelr a streamfunction = ¥p +1q, which is a sum of two monochromatic Rossby waves
Pp = AP and oy = Aell**@U The advection term in (1.6) is then given as:

J(, A) = —AQ(pQ _ qz)(p X q) - 5 el (PTa)x—lw(P)tw(@)]t} .

In the special case for which w(p) + w(q) = w(p + q) the r.h.s. is proportional to a third Rossby
wave Ypiq Which can then resonantly grow.
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in planetary turbulence and also in drift-wave turbulence in plasmas, both of
which are governed by the Charney-Hasegawa-Mima equation, which is formally
equivalent to the barotropic vorticity equation with finite radius of deformation
(Connaughton et al., 2010). The MI theory for the emergence of jets departs
considerably from the cascade theories of jet formation. It does not require
that jets emerge through a sequence of local interactions in wavenumber space
transferring energy upscale, but rather jet emerge from the instability of the
primary Rossby wave to a zonal jet perturbation, an interaction that involves a
non-local interaction in wavenumber space, i.e., the primary Rossby wave with
wavenumber k = (k;, ky) gives energy to the spectrally removed unstable zonal
jet p = (0,p,), which is nothing else but a zero frequency Rossby wave. In this
thesis we will investigate the relation of the MI theory for the emergence of jets
with the statistical theory that will be studied in this thesis. We will show that
MI is a special case of the more general instability that occurs in the theory we

will present (cf. chapter 4).

1.2.4 STATISTICAL APPROACHES FOR LARGE-SCALE STRUCTURE FORMATION

Turbulent flows involve enormous complexity and a large number of degrees
of freedom so it is tempting to describe turbulent flows by statistical methods
reducing in this way its complexity, in a similar way thermodynamics dramatically
reduce the complexity of the gas molecules movements in a box while still fully
describe the gas macrostate. However, turbulent flows are usually far from
equilibrium and the application of equilibrium statistical mechanics might not
be possible. Interestingly, due to the enstrophy conservation in 2D flows an
equilibrium statistical mechanical description of the flow in the inviscid limit is
feasible.” The statistical mechanics of a set of inviscid point vortices in 2D flow
goes back to Onsager (1949) (cf. Eyink and Sreenivasan (2006)) and the first
statistical mechanical formulation of 2D unforced inviscid flows was developed by
Miller (1990) and Robert and Sommeria (1991) (the MSR theory).® Their theory
postulates that the emergent equilibrium structures will be the ones that maximize
entropy while conserving energy, enstrophy and all the hierarchy of invariants in

2D. Bouchet and Sommeria (2002) extended the MSR theory to quasi-geostrophic

"In 3D flows, there can be energy dissipation due to vortex stretching even in the inviscid
limit, a phenomenon called “anomalous dissipation” (Onsager, 1949; Kaneda et al., 2003), not
allowing 3D flows to reach equilibrium state.

8For a historic review of statistical mechanical methods in turbulence refer to Bouchet and
Venaille (2019).
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barotropic turbulence and showed that the most probable structures are zonal
jets or large-scale vortices (for a review see Bouchet and Venaille (2012)).
However, planetary flows are both strongly forced and dissipated and therefore
out of equilibrium. A non-equilibrium statistical approach is more suitable
for the description of the statistical dynamics of the turbulent state. Such a
non-equilibrium statistical mechanical theory has been advanced by Farrell and

Toannou (2003) and will be discussed in this thesis.

1.2.5 WAVE-MEAN FLOW INTERACTION THEORIES

It has been known for a long time that waves in a material medium can interact
with the medium and form mean flows. The acoustic streaming experiments of
Rayleigh demonstrate this phenomenon (cf. Rayleigh (1896); Lighthill (1978)).
In acoustic streaming strong jet-like winds are generated by powerful ultrasound
sources. Acoustic streaming results from the divergence of Reynolds stresses
induced by the acoustic waves as they dissipate. As with acoustic streaming, jets
in planetary atmospheres can emerge from Rossby wave streaming in the presence
of dissipation. This is the basis of the wave—mean flow interaction theories for
the emergence of jets in the atmospheres. For this mechanism to work the region
of excitation of the waves and the region of dissipation of the waves should be
separated. In this case prograde flows emerge in the excitation region while
retrograde flows emerge in the regions of dissipation.’ In the Earth the source
of the equivalent barotropic planetary waves in the upper troposphere, following
Kuo (1951); Hoskins (1983); Held and Hoskins (1985) and as discussed earlier,
is the baroclinic activity in the lower troposphere. The equivalent barotropic
Rossby waves are radiated way to the North and South of the source region where
they eventually dissipate maintaining the upper-level polar jets (for a model of
this see DelSole (2001)). The presence of dissipation the emergence of large-scale
mean flows at steady state since in this case the wave-mean flow non-interaction
theorem (Eliassen and Palm, 1961; Charney and Drazin, 1961; Andrews and
Meclntyre, 1976; Boyd, 1976b,a) does not hold. (The dissipation of the flow is
mainly due to Ekman spin-down and additionally to breaking of the waves at
the “equatorial surf zone” at the critical layers in the Equator-wards flank of the
midlatitude jet.)

9Because of momentum conservation the integrated mean flow acceleration induced by the
waves integrates to zero.
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Figure 1.16: Schematic explaining the emergence of the upper-level eddy-driven tropospheric
jet in the Earth’s atmosphere according to Kuo (1951); Held and Hoskins (1985). Equivalently
barotropic waves are excited by baroclinic processes at the baroclinically active latitudes and as
they propagate way from the region converge prograde momentum into the region giving rise to
westerly flows. The waves are dissipated far from the region of excitation forming easterly flows
at these latitudes.

To demonstrate this mechanism consider a Rossby wave source region. Rossby
waves that radiate away from this region converge wave momentum into the
excitation region, i.e., d, (uv') < 0, inducing a positive mean flow acceleration
in this region. This is because Rossby waves with positive group velocities
propagating to the North (cf. Fig. 1.11a) have v/v/ < 0, and Rossby waves with
negative group velocities propagating to the South (cf. Fig. 1.11c) have positive
wv > 0. As a result 9,(vv) < 0 in the stirring region and because the zonal
mean flow is governed by d;u = —9,(u/v’), a positive mean flow acceleration
occurs in the stirring region. In the regions of dissipation momentum divergence
leads to the emergence of negative flows, as shown in Fig. 1.16. If the wave
excitation is statistically stationary the momentum convergence, —d, (u/v’), will
also be statistically stationary and the eastward mean flow will grow in the
mean linearly at a rate proportional to the energy input power, €, as shown in
Fig. 1.17.'% In conclusion: this wave-mean flow mechanism for the emergence of
flows predicts linear mean growth of the jet in the regions of stirring and requires
a localized forcing region and a propagation mechanism (here guaranteed because
of the positive PV gradient due to the existence of 3) in order for the waves to
dissipate away from the source region. As a corollary: if the forcing is distributed
homogeneously and the dissipation coefficients are constant (with no preferred

dissipation regions) then this mechanism cannot induce any mean flows.

10This explanation can be found in Thompson (1971, 1980) who proposed that this Rossby
wave radiation mechanism is responsible for the emergence of strong eastward currents in the
oceans and also conducted a laboratory experiment demonstrating the process (McEwan et al.,
1980).
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Figure 1.17: Zonal jet emergence under localized statistically stationary forcing. The fluid
has initially no mean flow. The red curve shows the linear jet amplitude growth that results
in the mean from momentum convergence into the excitation region according to the classical
wave—mean flow interaction theory, in which the modification of the eddy structure by the
emerging mean flow is neglected. The blue curve shows the ensemble mean jet amplitude
predicted to emerge by the statistical dynamical theory described in this thesis. The theory
predicts exponential jet growth induced by the active eddy—mean flow interaction (dashed),
followed by equilibration of the instability. The stochastic forcing consists of an ensemble of
temporally delta-correlated waves with zonal wavenumber k; = 8 with Gaussian structure in y,
ie., eﬂf/d{z7 with d = 0.8. Other parameters are § = 1.4 and r = 0.1.

The above theory assumes that the dominant and most relevant mechanism
for jet emergence is the momentum convergence in the stirring region by the
propagating Rossby waves. It is assumed that as the jet emerges its influence on
turbulence (which is not all waves) is negligible and as a result it can, at first,
be neglected (of second order if the jet is infinitesimal). However, we will show
in this thesis and demonstrate immediately with an example, that the influence
of the emerging jet on turbulence (which is neglected in the above theory) is
the important and dominant mechanism for the emergence and maintenance of
jets. Actually, it is dominant even for jets of infinitesimal amplitude. This active
feedback of the mean flow on the turbulence results in a new type of instability
that leads to exponential growth of the amplitude of the jet with the result that
the amplitudes diverge exponentially from the linear growth predicted by classical
wave—mean flow theory. It is important to note that this instability is an instability
of the statistical dynamics of the turbulent flow. We will present in this thesis
a second-order cumulant approximation to the full statistical dynamics of the
turbulent flow that reveals this instability of the interaction between large-scale
structure and turbulence. To demonstrate the implications of the statistical
dynamical formulation of the wave-mean flow dynamics we plot in Fig. 1.17 the

jet amplitude evolution predicted by the second-order closure theory discussed
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in this thesis under the same forcing. The jet grows initially exponentially and
then equilibrates, indicating that the second-order closure incorporates also the
dynamics of equilibration. The instability manifests only in the ideal dynamics
of the statistical state of the flow and is only partially reflected in individual
simulations. For example, in Fig. 1.18a we show the development of the jet in a
sample integration of the nonlinear equations of motion under a realization of the
excitation that was used in Fig. 1.17 and in Fig. 1.18b a snapshot of the vorticity
field and of the latitudinal structure of the jet that emerges. The nonlinear
simulation confirms that the growth is faster than linear at first, but this sample
integration can neither establish that there is an underlying instability nor make
analytic predictions as what jet structure is expected to emerge at first or the
parameter range that leads to jet emergence. Although this instability is revealed
only when the dynamics of the statistical state of the turbulent flow are examined,
the predictions of the statistical theory are reflected in sample simulations of
the nonlinear dynamics. Moreover, this instability of interaction that leads to
the emergence of jets does not even require that the forcing be localized. Jets
may emerge even if the forcing is homogeneous, contrary to the predictions
of classical wave—mean flow theory. In Fig. 1.19 we demonstrate in sample
nonlinear simulations the emergence of robust jet structure both under spatially
inhomogeneous forcing (Fig. 1.19a) and, most importantly, under homogeneous
forcing (Fig. 1.19b).

In this thesis we will use a non-equilibrium statistical theory to address for-
mation and maintenance of jets and large-scale structures in turbulence. The
proposed theory differs greatly from current theories that involve turbulent cas-
cades and it has its basis in wave—mean flow interaction theories which consider
that the most important interaction is the non-local in wavenumber space in-
teraction between large-scale flows and the smaller scale eddies. Systematic
investigation of the energy and enstrophy transfers among spectral components
in numerical simulations has revealed that indeed the upgradient energy transfer
from the small scales to the large-scale flow is mainly due to the highly non-local
interactions in wavenumber space with a clear scale separation between them
(Shepherd, 1987; Huang and Robinson, 1998). In this thesis we will demonstrate
that not only local wavenumber interactions are not the main contributors to

large-scale structure formation but moreover, they are not even required.
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Figure 1.18: Reflection of the statistical dynamical results shown in Fig. 1.17 obtained by
integrating the nonlinear barotropic equation (1.6) under a single realization of the forcing used
in Fig. 1.17. (a): the time development of the jet amplitude. (b): a snapshot of the vorticity field.
The realization reflects the predictions of the statistical theory that initially the jet amplitude
grows exponentially.

localized excitation homogeneous excitation

Figure 1.19: (a) Instantaneous snapshot of the vorticity field resulting from localized stirring
in the region centered at y = 7, indicated on the left of the panel, together with a snapshot of the
structure of the zonal mean velocity (thick white line). This case differs from that of Fig. 1.18 in
the spectrum of the excitation. Here the excitation is obtained by convolving a homogeneous
excitation with isotropic spectrum centered at total wavenumber k; = 15 with a Gaussian
localizing the excitation only in the y direction to the region around y = w. The dependence
of the large-scale flows that emerge on the spectrum of the excitation will be addressed in this
thesis. The jets in this case form from the momentum convergence into the excitation region
resulting from the Rossby wave propagation and from the active feedback of the jet on the waves
that leads to the intensification of the preexisting jet. (b) Snapshot of the zonal mean flow and
of the vorticity field when the excitation is spatially homogeneous. While in this case classical
wave-mean flow theory predicts that no mean flow should emerge, the statistical dynamics
discussed in this thesis predict that a bifurcation occurs as the energy input, ¢, increases or the
dissipation coefficient, r, decreases. In the specific case, for parameter values € k]% /r® < 3.3x10°
the turbulent flow remains homogeneous with no jets, while for ek7/r* > 3.3 x 10* the turbulent
flow transitions to an inhomogeneous state with large-scale jets. The nonlinear integration shown
here at e kfc /r® = 5 x 10* demonstrates that the predictions of the statistical dynamics are
reflected in individual realizations of the flow. It will be demonstrated in this thesis that the
predictions of the statistical dynamical theory are reflected also for parameters near the critical.
Other parameters: [/(kyr) = 70 and the numerical integration was performed at resolution
512 x 512 with a pseudospectral code. 28



Formulation of the S3T statistical state

dynamics of turbulent flows on a [-plane

The formation and maintenance of zonal jets in planetary atmospheres is es-
sentially governed by barotropic processes. The simplest setting in which we
can study planetary barotropic processes is a planar flow on a rotating g-plane
which conserves the absolute vorticity of the flow in the absence of dissipation.
Turbulence on a [S-plane does not self-sustain and a turbulent state must be
externally forced in order to be maintained against dissipation. This forcing
may model processes absent from the 2D barotropic dynamics, such as energy
injected by baroclinic instabilities or turbulent convection. Because of the erratic
and unpredictable nature of these vorticity sources in planetary turbulence, the
forcing is modeled as a white-noise process in time given that the fluctuations of
the forcing have a short autocorrelation time compared to the time scales of the
barotropic dynamics. We also assume that the forcing is spatially homogeneous
and if the turbulent flow becomes inhomogeneous this should be attributed to
the dynamics.

In the following sections we formulate the quasi-linear approximation of the

nonlinear stochastically forced barotropic vorticity equations and derive the
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equations of the S3T statistical dynamics of the turbulent flow on a barotropic
B-plane. S3T is an acronym for Stochastic Structural Stability Theory, which was
initially abbreviated as SSST. The reason for this acronym will become apparent

in this chapter.

2.1 FORMULATION OF THE S3T DYNAMICS ON A -PLANE

Consider a non-divergent, barotropic flow on a infinite S-plane with planetary
vorticity gradient, 3 = (0, ). The velocity field being non-divergent can be
expressed in terms of a streamfunction, v, as u = 2z x V4 which implies (u,v) =
(—=0y, 021)) (2 is the unit vector normal to the f-plane, see Fig. 1.10). The
vorticity of the fluid is V x u = (2 with ( = 0,v —dyu = AY,and A=V -V =
02, + 35;/ the two-dimensional Laplacian. In the presence of stochastic forcing
and dissipation, the potential vorticity, ¢ = ¢ + fo + 8 - x, which here is simply
the absolute vorticity, evolves as:
Dg

where D/Dt = 0; + u - V is the material derivative along the fluid flow. The
advection term, (u- V)g, is alternatively expressed as J(1,q) where J(g,h) =
(029)(0yh) —(0yg)(0,h) is the Jacobian of functions g and h. The flow is dissipated
with linear damping at a rate r, which typically models Ekman drag in planetary
atmospheres. Turbulence is maintained by the external stochastic forcing 1/e£(x, t).
We assume that /2§ is a homogeneous random stirring and we model this
excitation as temporally delta-correlated Gaussian process with zero mean, i.e.,

(&(x,t)) = 0, and with spatial correlation prescribed by @,

(€xa, E (D, 1)) = Qxa — %) 6(t — 1) . (2:2)

The brackets denote the ensemble average over forcing realizations. (For details
regarding the stochastic excitation refer to Appendix A.) We render (2.1) non-
dimensional using as a time scale the dissipation time scale 1/r and as a length
scale the typical length scale of the stochastic excitation, Ly. With this non-

dimensionalization (2.1) becomes an equation for the variables

C*:fa w* w é-*_ €

= = 2.3a
r ’I”L?c 7“1/2[/]71 ( )
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and parameters
B * £

* = Y € = Y
’ rL;! r3L%

=1, (2.3b)

From here on we will work with the non-dimensional equation and drop the
asterisks. Typical values for the non-dimensional parameters are g* = 15, ¢* =
1200 for the Earth’s atmosphere, 5* = 3, ¢* = 1600 for the ocean and 5* = 450,
e* =4 x 107 for Jupiter, based on the parameter values of the table 2.1.

Table 2.1: Typical parameter values for geophysical flows. The typical forcing length scale is
taken as the deformation radius in each geophysical setting.

1/k¢ 1/r Urms B 2 * *

k]  [day(=24h)] [ms ! [0 "m~'s!] [m2s% P €
Earth’s atmosphere 1000 10 15 1.6 2x 1073 15 1300
Earth’s ocean 20 100 0.1 1.6 109 3 1600
Jovian atmosphere 1000 1500 50 0.35 0.5x 107° 450 4 x 107

The first step in constructing the S3T dynamical system is to decompose the
vorticity flow field into an averaged or mean field, Z = T [ (], and deviations from
the mean vorticity, ¢/ = (—Z, which is referred to as eddy vorticity. The averaging
operator T determines the type of mean field we want to study. We employ
two types of averaging operators: i) an average over the zonal z direction, i.e.,
Tl¢]=L;" [;" dz ¢(x,t) and ii) a Reynolds average in which T [¢] produces a
coarse-grained field which is obtained by averaging over an intermediate time scale
or length scale which is larger than the time scale or length scale of the turbulent
motions but smaller than the time scale or length scale of the coarse-grained field.
In the first interpretation of the averaging operator the mean flows are zonal
jets while in the second they may be either zonal jets or slowly moving traveling
waves.

With this decomposition, the barotropic vorticity equation (2.1) is equivalently

rewritten as a system for the joint evolution of the mean and the eddy vorticity:

WZ+J(W,Z+B-x)=-T[J@W, ()] -2, (2.4a)
8tC/ = _J(¢/7Z+16'X) - J(IIJ7CI) - CI+7—[J(¢I7<I)} - J(w/7gl) +\/g£ 5
AU) ¢ fan
(2.4b)

where ¥ = T [¢] is the mean streamfunction and ¢’ is the eddy streamfunction.

Equations (2.4) are referred to as the NL system. The stochastic excitation is
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assumed to have zero mean, 7 [£{] = 0, and consequently the mean equations are
unforced. The first term on the r.h.s. of (2.4b), A(U)(’, represents advection of
eddy vorticity by the mean flow and is a bilinear functional of the eddies and
the mean flow, while the second nonlinear term, foy =7 [J (¢, ()] — J (', ),
represents advection of the eddy field by itself. The operator A(U), which governs
the linear dynamics of the eddy field if the mean flow U = Z x VWV is prescribed,

can be written as:
AU)=-U-V+[AU)-V+2-(Bx V)| A7 -1, (2.5)

We also make the ergodic assumption that the 7T average of a flow field
(i.e. the zonal average or the Reynolds average over the intermediate time or
length scale) is equal to the ensemble average over the forcing realizations, i.e.,
T [p(x,t)] = (¢(x,t)), where the brackets denote the ensemble average. The
identification of the ensemble average with an averaging operation is crucial for
the realization of the statistical quantities in a single planet and the validity of
the ergodic assumption is established by experiment.

In order to obtain a closed statistical description of the turbulent flow we
restrict the nonlinearity in the NL equations by neglecting the eddy—eddy term,
fa1, in (2.4b) or parametrize it as stochastic excitation. We obtain in this way

the quasi-linear (QL) approximation to the NL system (2.4):

WZ+JV,Z+B-x)=-T[JW, )] -2, (2.6a)
¢ = AU) ¢+ Ve . (2.6b)

A schematic comparing the nonlinear interactions operating in NL and QL system
is shown in Fig. 2.1. In NL the term f;;, which is neglected in QL, neither injects
nor dissipates energy (see Appendix A) and therefore the QL system, in the
absence of forcing and dissipation, has the same invariants as the NL system,
namely it conserves both energy and enstrophy.

The QL system has the attribute that its statistical dynamics close at second
order. To obtain the statistical dynamics of the quasi-linear system (2.6) we
use the ergodic assumption to identify Z = () and the second cumulant of the

vorticity between points x, and xp,

C(Xa, Xp, 1) = <<'(xa,t)g'(x,,,t)> , (2.7)
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Figure 2.1: Schematic of all possible wavenumber triad interactions in the NL and QL
systems. (a) Two eddies with wavenumber vectors ki and ks combine to form a mean flow with
wavenumber ki + ko. This interaction is in both NL and QL (it is term 7 [J (¢,¢')] in (2.4a)
and (2.6a)). (b) A wavenumber k; mean flow interacts with a ko mean flow to produce a mean
flow with wavenumber k; + ko. This interaction is in both NL and QL (it is term J(U, Z)
in (2.4a) and (2.6a)). (c) A wavenumber k; mean flow interacts with a wavenumber k2 eddy to
produce a ki + ko eddy. This interaction is in both NL and QL (it is term .A(U)¢’ in (2.4b)
and (2.6b)). (d) An wavenumber k; eddy interacts with a ko eddy to produce a ki + ko eddy.
This interaction is included in NL (term fu1 in (2.4b)) but neglected in QL.

with T [{'(Xa,t) ¢'(Xp,t)]. Then, the average T [J(¢',¢")] = (J(¢',{")) can be
expressed as a linear functional of Cy(t) = C(X4,Xp, t). To show that we use the
incompressibility condition to rewrite J(¢', (") = V - [(2 x V') ('], and proceed

as follows:
T{V [ x V) (]} =V T [(ax V)] =V ((#x V) ()
=V (3% (Vatl G+ Vith )

Xaq=X}p
1, -1 -1

— V. |2ax (VQAQ + VoA, )Cab . (2.8)

2 Xaq=Xp
The subscript a or b in functions denotes hereafter the value of the function at
Xq OF Xp, 1.e. ) = ('(Xq,t), the subscript a or b in operators denotes the action
of the operators only on the variables x, or x; respectively, and the subscript
X, = Xp denotes that any expression depending on the two variables x, and

I The operator A~! is the inverse of

Xp should be evaluated at x, = X, = X.
the Laplacian which has been rendered unique by incorporating the boundary
conditions. Equation (2.8) shows that 7[J(¢’,(’)] is a linear functional of C. We

denote the linear functional given in (2.8) by R and set

R(C) = =TI, ()] . (2.9)

'For example: 9, {695,, Kl(X“’t)C/(xb’t)]}xa:xb = Oy [C/(Xa,t)8¢bﬁ/(xb,t)]xﬂ:)(b =
05, [¢'(x,)*/2].
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The first cumulant, Z, of the flow field therefore evolves according to:
WZ+JV,Z+8-x)=R(C)- Z. (2.10)

To obtain the evolution equation of C' we take the time derivative of (2.7) and

obtain:2

hCap = |Aa(U) + A(U)] Cop + VE (€alh+ Cio) (2.11)

where A,(U) indicates that the coefficients of the operator A4(U) are evaluated
at x, and that the differential operator act only on the variable x, of C(xg, Xy, t).
(Similarly for A(U).)

It can be shown (see Appendix A.2) that for temporally delta-correlated
stochastic forcing term <§QC{) + Cg§b> is independent of the state of the system
and exactly equal to vz Q(xq — X3) = V€ Qu.> The rate of energy injection
is thus independent of the state of the system and is prescribed by the spatial
forcing covariance () and the amplitude factor e. The same is true for the NL
system. In both systems the energy injection rate is e [(27r)*2 [d?’k Q(k)/(2k2)},
where Q(k) is the Fourier transform of Q,

Q(k) = / d?(xa = Xp) Q(xq — x3) e K xamx0) (2.12)

with k = (kg, ky). Because @ is a homogeneous covariance its Fourier transform is
real and non-negative, i.e., Q(k) > 0, for all wavenumbers k. The quantity Q /K2,
where k = |k|, determines the energy spectrum of the forcing. We normalize @ so
that

/¥kmm

(2m)? 2k2 ’

and the energy injection rate per unit area is €. For details see Appendix A.
The joint evolution of the first two cumulants of the flow field, Z and C, define

the S3T statistical state dynamics of the turbulent flow which is governed by the

In writing (2.11) we adopt the Stratonovich interpretation for stochastic differential equations.
However, because the stochastic forcing in our case is additive, both Stratonovich and It6
interpretations lead to the exact same results (cf. Appendix A).

3The dependence of the spatial covariance of the forcing on the difference coordinate x, — x;
indicates that the stochastic forcing is spatially homogeneous (see Appendix A).
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autonomous system of deterministic equations:

WZ+J(V,Z+B-x)=R(C)— Z, (2.13a)
Cap = [Aa(U) + A(U)] Cap + 2 Qui (2.13b)

The S3T system (2.13) corresponds to a second-order closure of the full sta-
tistical dynamics of the turbulent flow. This closure became possible because of
the adoption of the quasi-linear approximation. If the quasi-linear approximation
were not made, then the evolution of the second cumulant, C', would also involve
terms of the form (fu1(Xq,t)¢'(Xp,t)), which are related to the third cumulant and
as a result the equations for the first two cumulants would not close. Neglecting
or parametrizing the eddy—eddy terms in (2.4b) by a state independent Gaussian
stochastic process leads to a closed set of equations for the evolution of the first
two cumulants of a Gaussian approximation of the statistical state dynamics of
the turbulent flow. This approximation is also referred to as “CE2”. Note that
higher order truncations of the cumulant equations is problematic. Marcinkiewicz
(1939) has shown that truncations of the cumulant equations at order ng > 2,
obtained by setting all n-th order cumulants for n > ng equal to zero, produce
non positive probability density functions (pdf). Therefore the only physically

realizable cumulant truncation is at second order.

2.2 TFORMULATION OF THE S3T DYNAMICS OF ZONAL MEAN STATES

The most common mean flows that appear in planetary turbulence are zonal
jets. In order to address the statistical dynamics of zonal jets in turbulence we
may choose the averaging operator 7 to be directly the average over the zonal

direction, x, i.e.,

T 4] = Ll/OL o(2,y,t)da’ = B(y, 1) . (2.14)

The zonal average of a flow field is also denoted with an overbar, for example
d(x,t) = Ly~ ' [y ¢(a',y,t) da’. This zonal S3T closure simplifies significantly
the QL and S3T systems and it is the easiest to interpret because the separation
between mean and eddy is unequivocal.

With the zonal average the mean flow vorticity Z is related to the zonal flow
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mean flow, U, through Z = —0,U, and because non-divergence implies 9,V = 0,
without any loss of generality, we can assume that V = 0. Since 8 = (0, 3) the
advection of the mean potential vorticity flow, Z + 3-x, by the mean flow field, U,
vanishes, i.e., J (¥, Z 4+ B -x) = 0, and the zonal average vorticity flux divergence

simplifies to:

JW,. ) =V W) =0, (vT) . (2.15)
With these simplifications the NL system takes the form:
U =v{-U, (2.16a)
o = AU)( + 0, (VT) = V- (W ) +vEE, (2.16D)
fnl,z

while the QL system becomes

U =0 -U, (2.17a)
a¢' = A, (U) ¢ +VeE€, (2.17b)

where in both (2.16) and (2.17) operator A, is
A(U) = =00, — (8- 03,U) 9,7~ 1. (2.18)

(Roman subscript z denotes that the zonal mean—eddy decomposition was used.)

The three types of nonlinear triad interactions that can occur between the
mean quantities and the eddies are shown in Fig. 2.2. In the QL approximation we
neglect fy1, or parameterize it as stochastic noise. It should be noted that Bouchet
et al. (2013) have established that in this zonal mean—eddy decomposition the
QL approximation becomes exact in the limit of ¢* = 5/(r3L%) — oo (cf. (2.3b)).

Because A,(U) is invariant under the translation 2 — x + « for any constant «,
the eddy vorticity equation is homogeneous in x and therefore the eddy vorticity

covariance will always be homogeneous in x and consequently of the form:
C(Xa,Xb,t) = C(ma _l'bayavybat) . (219)
The zonal homogeneity of C' allows us to simplify the flux divergence to:

1
R,(C) = -0, [2 (A7 00, +25 s, cab] , (2.20)

Xa=Xp
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Figure 2.2: Schematic of the triad interactions among the zonal or z-wavenumber fields in
the NL system (2.4). The wavenumbers in this figure refer only to the zonal or z-wavenumber
components of the full wavenumber vector k. (a) Two eddies with wavenumbers k, and —k,
interact to form a zonal mean flow, U (with k, = 0). This interaction is in both NL and QL
(it is term v’¢’ in (2.16a) and (2.17a)). (b) A k, wavenumber eddy interacts with mean flow U
(kz = 0) to produce another eddy with zonal wavenumber k.. This interaction is in both NL
and QL (it is term A,(U) ¢’ in (2.16b) and (2.17b)). (c) A k.1 wavenumber interacts with a kg2
wavenumber eddy to produce a kz1 + kz2 wavenumber eddy. This interaction is included in NL
(term fu1,, in (2.16b)) but neglected in QL.

and the S3T system takes the form

O = [5(8,10,,+8,10,)C| -~ (2.21a)
Xa=Xp
8tCab - {Az,a(U) + Az,b(U)} Cab +e Qab . (221b)

This system will be denoted as S3Tz (for S3T-zonal).

Solutions of (2.21) are also solutions of the generalized S3T system (2.13), i.e.,
a solution (U(y,t), C(xq — xb,ya,yb,t)> that satisfies (2.21) also satisfies (2.13)
as well; the converse however is not true. S3Tz system (2.21) has tremendous
advantage in numerical simulations over the generalized S3T system (2.13) because
its state variables have significantly fewer degrees of freedom. The method of
numerical integration of the stochastic NL and QL and of the deterministic S3T

equations is discussed in Appendix C.

2.3 S3T STATISTICAL EQUILIBRIA AND THEIR STABILITY

S3T systems (2.13) and (2.21) are autonomous and may admit equilibrium (fixed
point) solutions (Z °(x), C%(Xaq, xb)). These equilibria are statistical equilibria of
the turbulent flow and consist of the mean flow vorticity Z¢(x) and an eddy field
with covariance C°(xq4,Xp).

Remarkably, both S3T systems (2.13) and (2.21) admit the stationary homoge-
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neous equilibrium

7¢=0, C¢= %Q , (2.22)

for all values of ¢ and B8 = (8, 8y) with components 5, and f,, under the
condition that the forcing covariance is homogeneous. This statistical equilibrium
has no mean flow and a homogeneous eddy field. To confirm this note that
A= AU =0)=—-1+2%-(8x V)A™! and

(A + A = { =242 [8x (Vaa; + Vo8] } S0
=—eQ + gi {5 X (VaAgl + VbAgl)] / ((2172:){2 O (k) el (xax2)
= e - %/ ((2]1?){2 2 {5 % <_ll;2 + ::;)] Qk)el xamx)

= —eQ, (2.23)

showing that C° of (2.22) satisfies (2.13b). Further, from (2.9),

ROC%) = SV - |ax (Vars 1+ wua, 1) [TK et
( )__Z : ZX( aPRg + Vy b ) (27T)2Q< )6
Xa—=Xp
€ d’k [ ik —ik\ A,
— . |5 k ik (xa—xp) _
4V [zx/(zw)2 (_k2+_k2>Q( Je ]XXb 0,

(2.24)

which in turn confirms that (2.13a) is also satisfied. While the homogeneous
state (2.22) is always an equilibrium of the S3T system it may only be an
approximate equilibrium of the full hierarchy of cumulant equations. However,
we show in Appendix G that for the case of isotropic delta function ring forcing,
ie., for Q(k) = 47rkj% d(k — ky), this homogeneous statistical equilibrium is also
an equilibrium of the full hierarchy of cumulants.

The stability of any S3T equilibrium solution (Z¢, C*¢) is addressed by con-
sidering small perturbations (67, 0C') about this equilibrium and performing an

eigenanalysis of the linearized S3T equations about this equilibrium:

8,67 = A°5Z + R(5C) (2.25a)
O 0Ca = (AG+ A5) 6Cu, + (0 Aa +0.4) Cgy (2.25b)

where A° = A(U°) and 0 A = A(U® +6U) — A°.
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When the equilibrium is unstable the statistics of the flow bifurcate to a new
state. So the stability of an S3T equilibrium implies the structural stability of
the turbulent flow, while the marginally stable S3T equilibria identify the critical
states at which the turbulent flow becomes structurally unstable and transitions
to a new statistical state.

S3T stability involves the stability of the statistics of the turbulent state and
is fundamentally different from the hydrodynamic stability of a mean state. It
can be shown that if the S3T equations admit the equilibrium (Z¢,C¢) then by
necessity the associated mean state is hydrodynamically stable (cf. Appendix B).
However, the hydrodynamic stability of a mean state does not imply the S3T
stability. Most notable example is the homogeneous equilibrium with no mean
flow (2.22). The state of zero mean flow is clearly hydrodynamically stable but it
will be shown that at a critical parameter £ the homogeneous equilibrium becomes

S3T unstable and the turbulent flow reorganizes to an inhomogeneous state.

2.4 BIBLIOGRAPHICAL NOTE

The S3T theory was introduced by Farrell and Ioannou (2003). The continuous
formulation of the theory was developed by Srinivasan and Young (2012). The
cumulant interpretation was discussed by Marston et al. (2008) who refer to it as
CE2 (see also Marston (2012)). The cumulant representation of the statistical
dynamics of the flow were developed by Hopf (1952). The statistical stability of
the homogeneous state in S3T (or CE2) and the subsequent formation of zonal
jets is investigated in barotropic flows by Farrell and Toannou (2007); Bakas
and Ioannou (2011); Srinivasan and Young (2012); Parker and Krommes (2014).
Earlier, Carnevale and Martin (1982) using field theoretic techniques arrived at the
same equations for the statistical description of fluctuations about a homogeneous
state but the relevance for the emergence of zonal jets was not discussed. The
statistical stability of inhomogeneous states in S3T is investigated by Farrell and
Ioannou (2003); Parker and Krommes (2014). Statistical state dynamics with
higher order cumulant truncations are discussed by Marston (2012); Marston
et al. (2014). The generalized coarse-grained mean flow interpretation of S3T that
allows non-zonal solutions was introduced by Bernstein and Farrell (2010) in an
investigation of the phenomenon of blocking in a two-layer baroclinic atmosphere

and was studied recently for barotropic flows by Bakas and Toannou (2013a, 2014).
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Emergence of coherent structures out of
homogeneous turbulence through S3T

instability

3.1 S3T INSTABILITY OF HOMOGENEOUS TURBULENT EQUILIBRIUM

We have seen in the previous chapter that for spatially homogeneous forcing there
is always a homogeneous equilibrium of the S3T system (2.13). This equilibrium
is given by

Z°=0 , C%xq—%p)= %Q(xa —x) . (3.1)

We want to determine the statistical stability of this equilibrium as a function
of the parameters available in the problem. These parameters are the non-
dimensional ¢ and (8 defined in (2.3b) and also the spectrum of ). We examine
cases in which the spectrum of () is isotropic and cases in which it is anisotropic.

The stability of this equilibrium is determined by the linearized S3T perturbation
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equations (2.25) about the homogeneous equilibrium (3.1), which take the form:

8,67 = A°5Z + R(5C) (3.2a)
00 6Cap = (A + A7) 0Ca + (0 A0 +04,) Cs (3.2b)

where (0Z,0C) are the perturbation mean flow and perturbation covariance,
A =2-(Bx V)A™ —Tand 6A= —6U -V + [(AU)- V| AL,

The purpose of this chapter is to examine the stability of the homogeneous
equilibrium. We derive an analytic expression for the eigenvalues of (3.2) and
show that there is always a critical energy input rate ¢ = ¢, that renders (3.1)
unstable. When the equilibrium is unstable a mean flow in the form of the most
unstable mean flow eigenfunction grows, initially at the rate predicted by the
eigenvalue, and the turbulent flow will eventually reorganize to an inhomogeneous
state. We study the dependance of £, on non-dimensional 3 for isotropic and
anisotropic forcing spectra and also determine which type of mean flow (zonal

jets or non-zonal flows) is the most unstable.

3.2 EIGENANALYSIS OF THE HOMOGENEOUS EQUILIBRIUM

We proceed now with the stability analysis of (3.1). Consider eigenfunctions of

the form (52, (56’) e*t. The eigenvalue s and §Z(x) and §C(x,,x;) satisfy the
eigenvalue problem

$6Z = A°0Z +R(6C) , (3.3a)

50Cu = (AG + A5) 6Ca + (040 + 54) Cy - (3.3b)

The eigenfunctions can be assumed in the form

6 Zn(x) = ™ (3.4a)
5C’n(xa,xb) = ~I(1h) (xa — xb) el (Xatx0)/2 (3.4b)

with n = (ng,n,) the wavevector of the eigenfunction (see Appendix E). The
mean flow component of the eigenfunction (3.4a) is a zonal jet when n, = 0 and
a non-zonal flow, a plane wave, when n, # 0.

Note that the mean flow eigenfunction 67y is also an eigenfunction of A€ with
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eigenvalue —(iwy + 1),
A°6Z = —(iwn +1)0Z , (3.5)

where wy, is the Rossby frequency

z-(B xn)

n2

Wn

, (3.6)

with n = |n| and as a result (3.3a) can be written as (o + 1)6Z = R(6C) with
0 = s + iwn. Because the Reynolds stress associated with the perturbation
covariance, R(3C), is proportional to € (as C¢ is proportional to €) it can be

written as

R(6C) =€ f(0)6Z , (3.7)

where f is the Reynolds stress feedback or eddy feedback, and o satisfies the

dispersion relation
c+1=cf(o). (3.8)

We remind the reader that the 1 in the L.h.s. of (3.8) is the rate of dissipation and
therefore the homogeneous state is unstable when Re(o) > 0 or € Re [ f (0)} > 1,
i.e., the mean flow acceleration by the Reynolds stress feedback exceeds the decay
due to dissipation. The term f(c) measures the feedback on the mean flow 62
by the eddy perturbation field after being distorted by the mean flow §Z. When
Re[f(o)] > 0 the feedback on the mean flow by the eddy perturbation field has
the tendency to reinforce the existing mean flow and the vorticity fluxes due to the
eddies are upgradient. It is necessary for instability to have upgradient vorticity
fluxes but it is not sufficient, because they have to overcome the dissipation. In
Appendix E we show that the function f(o) is (cf. Appendix E, eq. (E.10)):

2 wnl? (k2 — E2)(k2 — n2 A
o) [ e Bl W) 00

2m)? k*k2n? [(0 +2)+i(Wkin — wn — wk)} 2

with ks = k + n and ks = |ks| and the dispersion relation for the stability of the

homogeneous equilibrium is

N

d’k [k x nf? (k% — k*)(k* — n?) Q(k)
c+1= .
* 8/ (2m)? k*k2n? [(o +2) +i(wkin — Wn — wk)}

(3.10)
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Figure 3.1: Top panels: the forcing covariance spectrum, Q(k) = 4w d(k — 1) [1 + pcos(2v)],
for (a) p =1, (b) p =0 and (c) u = —1 (the support of the delta function is represented as a thin
ring). Bottom panels: contours of the vorticity field induced by a realization of the stochastic
forcing for (d) p =1, () p=0and (f) p=—1.

We investigate the stability of the homogeneous equilibrium under stochastic

forcing with spectrum

A

Qk) =4rG(y)o(k - 1), (3.11)

with v = arctan (k,/k;) and
G(y) =1+ pcos(2y) . (3.12)

This forcing excites an eddy field at total wavenumber k¢ = 1 (in dimensional
units ky = 1/Ly) and the parameter p measures the anisotropy of the forcing.
Parameter u takes values |p| < 1 so that G() > 0 for all . For = 0 the forcing
is isotropic (see Fig. 3.1b,e). For pu > 0 the stochastic forcing is anisotropic (see
Fig. 3.1a) favoring structures aligned with the meridional axis (i.e. with k, = 0),
as shown in Fig. 3.1d, while 1 < 0 (see Fig. 3.1c) favors structures aligned with
the zonal axis (i.e. with k, = 0), as shown in Fig. 3.1f. In Jupiter because the
excitation models vorticity input by turbulent convection we expect excitation to
be of the p = 0 type, while in the Earth because the excitation models injection

of vorticity due to baroclinic processes we expect excitation closer to u = 1.
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We determine the critical energy input rate €., that renders the homogeneous
equilibrium unstable to zonal jet perturbations and the critical energy input rate
€cnz that renders the homogeneous equilibrium unstable to non-zonal pertur-
bations. &, is the minimum e for which Re(c) = 0 for an eigenfunction with
wavevector n = (0, n,) and e. n, is the minimum ¢ for which Re(o) = 0 for an eigen-
function with wavevector n = (ng,ny) and n, # 0. When € > min (g¢ 4, €cnz) = €c
the homogeneous equilibrium is unstable and the structure that first emerges is
zonal or non-zonal according to whether the minimum € is e, or €¢ ny-

The critical energy input rates, ., and €., as a function of g for isotropic
forcing (u = 0) is shown in Fig. 3.2a. For 8 < 3.5 the structures that become
first unstable are zonal jets (e, < €¢n,) and for supercritical energy input rates
always zonal jets are more unstable than non-zonal perturbations. For g > 3.5
non-zonal structures become first unstable and for a range of energy input rates
Eenz < € < €¢y only them are unstable. For € > €., zonal jets become unstable
but with less growth rates compared to non-zonal structures. For 8 < 3.5 zonal jet
eigenfunctions grow the most whereas for 8 > 3.5 non-zonal structures grow the
most. In the light shaded region only non-zonal coherent structures are unstable,
while in the dark shaded region both zonal jets and non-zonal coherent structures
are unstable. Growth rates, o, as a function of the eigenfunction wavevector
n = (ng,n,) for 4 different choices of § and ¢ are shown in Figs. 3.2b-e.

The €., and €., for both isotropic as well as anisotropic forcing are shown in
Fig. 3.3. This figure shows that the homogeneous equilibrium becomes unstable
for all values of § > 0. The homogeneous equilibrium becomes also unstable
even for § = 0, unless the excitation is exactly isotropic (cf. Appendix E.1).
This is an important result because it shows that the dynamics that lead to the
initial emergence of large-scale structure does not require the presence of 5. We
show in the next sections that for isotropic forcing both e., and ., increase
as 72 as B — 0, but for anisotropic forcing e. = 32/|u| + O(5?) for small S.
The homogeneous equilibrium is rendered unstable with the least € in the range
1 <5 < 10. For B 2 4 the equilibrium becomes first unstable to non-zonal
perturbations. As 3 increases the homogeneous equilibrium becomes more stable
and larger ¢ is required to destabilize it. It is shown that zonal jet emergence
requires €., ~ (% as B — 0o, which means that the effective feedback on the
mean flow falls as Re[f(0)] ~ 372 as 8 — oo, but for the emergence of non-zonal
structure ., ~ B2 as B — oo (Re[f(c)] ~ 87/2) because of the occurrence

of fortuitous resonances that are explained in the next sections. The asymptotic
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behavior of €., and e, n, for large 3 is independent of the forcing spectrum.

3.3 EDDY-MEAN FLOW DYNAMICS UNDERLYING THE S3T INSTABILITY OF
HOMOGENEOUS TURBULENT EQUILIBRIUM

In order to analyze the dynamics underlying the S3T instability we study the
behavior of Re(f) at the critical ¢ at which the eigenfunction with wavevector
n becomes neutral and set o, = 0 and o; = 0 in (3.9) and (3.10).! We denote
the eddy feedback on the mean flow perturbation with wavenumber n in this
approximation as f, = Re(f(0)). The eddy feedback for this delta function

forcing (3.11) can be written as

™

= /]-'(«9, n)dod (3.13)

0

where F(6,n) is the contribution to f, from the individual forcing components of
@ corresponding to wavenumbers k and —k. For the narrow ring forcing (3.11)
all forcing components have k = 1 and are only characterized by angle 6, that
is subtended measured from the lines of constant phase of the eigenfunction n
(see Fig. 3.4). We also write n = (nsin ¢, ncos @) so that zonal jet eigenfunctions
correspond to ¢ = 0°, while non-zonal eigenfunctions to ¢ # 0°. The angle
v = arctan(k, /k;) is given as v = 6 — . The relation between angles 6, ¢ and ~
is shown in Fig. 3.4. We can isolate the dependence of this eddy feedback on
by writing as F(6,n) = F'(6,n) + F(180° + 6,n) with

N Dy

FO,n) = —5——-—=
(7n) D%+ﬁ2D%’

(3.14)
where, as shown in Appendix E.2, functions A, Dy and D do not depend on f.
F measures the feedback on the mean flow from two monochromatic excitations
with wavenumbers k and —k (see Fig. 3.4). We wish to determine the # that
produce positive feedback to eigenfunction n and contribute to the instability of
n.

In the following sections we determine the contribution of the various waves to
the eddy feedback and identify the angles 6 that produces the most significant
contribution to this feedback. We also calculate the eddy feedback f, as a function

That 0; = 0 or equivalently s; = —wy, for all wavevectors n at the stability boundary is an
approximation but it can be shown that is a valid approximation.
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Figure 3.2: (a) The critical energy input rates e., (solid) and e.n, (dashed) that render
the homogeneous equilibrium unstable to zonal jet perturbations (n = (0,n,)) and non-zonal
perturbations (n = (ng,ny)) respectively, as a function of 8 for isotropic forcing covariance
spectra (u = 0, Fig. 3.1b). Also shown are the slopes 572, % and 8'/? (dash-dot). Typical values
of the Earth’s atmosphere and ocean and Jupiter’s atmosphere (found in table 2.1) are marked
with stars. For 8 < 3.5 zonal jet eigenfunctions grow the most whereas for 5 > 3.5 non-zonal
structures grow the most. In the light shaded region only non-zonal coherent structures are
unstable, while in the dark shaded region both zonal jets and non-zonal coherent structures are
unstable. (b)-(e) S3T growth rates, o, as a function of the eigenfunction wavevector n = (n., ny)
for the four cases marked in (a). The thick line corresponds to the o, = 0 contour. For (b), (d),
(e) the contour interval is 0.15 while in (c) the contour interval is 0.5. The dashed line marks
n = 1 and corresponds to the forcing scale.

46



T \\HHW T \\HHW T \\HHW T \\HHW T \\HHW

TTT

5
Ty

13
5
L LA BRI AL S ARl

T

. pw=1

N lllHM - lllHM 1 'I‘lllHM - lllHM - lllHM 1
—1 0 1 2

10 10 10 10 10

Ervond ol o el ol el

oI
b

Figure 3.3: The critical energy input rates e., (solid) and e n, (dashed) that render the
homogeneous equilibrium unstable to zonal jet perturbations (n = (0,n,)) and non-zonal
perturbations (n = (ng, ny)) respectively as a function of 8. Shown are the e, and e n, for
the three forcing covariance spectra seen in Fig. 3.1. Also shown are the slopes 72, 82 and
ﬁl/ 2 (dotted line). For 8 2 4 the equilibrium first becomes unstable to non-zonal perturbations
regardless of pu. For = —1 zonal jet perturbations are unstable only for 8 2 1.8.

Figure 3.4: A non-zonal plane wave perturbation with wavevector n at an angle ¢ to the
northward direction (the direction of 3) becomes a zonal perturbation when the coordinate frame
is rotated clockwise by . Under this rotation the components of the wavevector k = (cos~y, sin )
are transformed to k = (cos#,sin @), with 6 =~ + ¢. F(n,0) in (3.13) is the mean momentum
flux convergence from plane wave perturbations that arise from excitations with wavevectors k
and —k.
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of the total mean flow wavenumber n for 0 < ¢ < 90°. We limit our discussion to
the emergence of mean flows with n < 1, i.e., with scale larger than the scale of
the forcing. (Remember that all wavenumbers are non-dimensionalized with the
forcing wavenumber k.) In section 3.4 the analysis is mostly focused to isotropic

forcing (G = 1) while the effect of anisotropy is discussed in section 3.5.

3.4 EDDY-MEAN FLOW DYNAMICS LEADING TO FORMATION OF ZONAL AND
NON-ZONAL STRUCTURES FOR ISOTROPIC FORCING

3.4.1 INDUCED VORTICITY FLUXES WHEN [ < 1

We expand the integrand F of (3.13) in powers of 3:
F=Fo+ B F+0(5"), (3.15)

with Fo = % 0/236}— ‘ﬁ:o' The leading order term, g, is the contribution of each
wave with wavevector k = (cosf,sinf) to the eddy feedback in the absence
of B and is shown in Fig. 3.5a. For § = 0, the dynamics are rotationally
symmetric and for isotropic forcing f, is independent of . Therefore all zonal
and non-zonal eigenfunctions with the same total wavenumber, n, grow at the
same rate. Upgradient fluxes (Fp > 0) to a mean flow with wavenumber n are
induced by waves with phase lines inclined at angles satisfying 4sin?§ < 1 + n?
(cf. Appendix F). This implies that all waves with |f| < 30° necessarily produce
upgradient vorticity fluxes to any mean flow with wavenumber n < 1, while
waves with 30° < |6 < 45° produce upgradient fluxes for any mean flow with
large enough wavenumber (cf. Fig. 3.5a). The eddy—mean flow dynamics was
investigated in the limit of n < 1 by Bakas and loannou (2013b). It was shown
that the vorticity fluxes can be calculated from time averaging the fluxes over the
life cycle of an ensemble of localized stochastically forced wavepackets initially
located at different latitudes. For n < 1, the wavepackets evolve in the region
of their excitation under the influence of the infinitesimal local shear of 6U and
are rapidly dissipated before they shear over. As a result, their effect on the
mean flow is dictated by the instantaneous (with respect to the shear time scale)
change in their momentum fluxes. Any pair of wavepackets having a central
wavevector with phase lines forming angles |6| < 30° with the y axis surrender
instantaneously momentum to the mean flow and reinforce it, whereas pairs with

|0] > 30° gain instantaneously momentum from the mean flow and oppose jet
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formation. Therefore, anisotropic forcing that injects significant power into Fourier
components with [#] < 30° (such as the forcing from baroclinic instability that
primarily excites Fourier components with # = 0°) produces robustly upgradient
fluxes that asymptotically behave anti-diffusively. That is, for a sinusoidal mean
flow perturbation dU = sin (ny) we have [T Fodf = sn? with & positive and
proportional to the anisotropy factor p (cf. Appendix F).

For isotropic forcing the net vorticity flux produced by shearing of the pertur-
bations vanishes, i.e., [; Fodf = 0, given that the upgradient fluxes produced
by waves with |f| < 30° exactly balance the downgradient fluxes produced by
the waves with |0 > 30°. However, a net vorticity flux feedback is produced and
asymptotically behaves as a negative fourth-order hyperdiffusion with coefficient
O(8?) for B < 1 (cf. (3.16) and Bakas and Ioannou (2013b)). In Appendix F it
is shown that the feedback factor f;,. for isotropic forcing in the limit 8 < 1 with
B/n < 1 is:

A
fr= 526—4 {2 + cos(2<p)} + (’)(ﬁ4) , (3.16)

which is accurate even up to n = 1, as shown in Fig. 3.6. In order to understand
the contribution of 8 to the vorticity flux feedback, we plot Fa/n* for a zonal
(Fig. 3.5b) and a non-zonal perturbation (Fig. 3.5¢) as a function of the mean flow
wavenumber n and wave angle §. We choose to scale Fy by n* because in (3.16)
f, increases as n*. Consider first the case of a zonal jet. It can be seen that at
every point, F»2 has the opposite sign to Fp, implying that 5 tempers both the
upgradient (for roughly |f| < 30°) and the downgradient (for |6] > 30°) fluxes of
Fo. However, in the sector |#] > 30° the values of Fy are much larger than in the
sector |A| < 30° and the net fluxes integrated over all angles are upgradient, as
in (3.16) for the isotropic case.

The asymptotic analysis of Bakas and Ioannou (2013b), which is formally
valid for n < 1, offers understanding of the dynamics that lead to the inequality
FrFp < 0 and to the positive net contribution of 7, i.e., to [ Fod# > 0. Any
pair of wavepackets with wavevectors at angles |6] > 30° instantaneously gain
momentum from the mean flow as described above (i.e. Fy < 0 for |6] > 30°), but
their group velocity is also increased (decreased) while propagating northward
(southward). This occurs due to the fact that shearing changes their meridional
wavenumber and consequently their group velocity. The instantaneous change

in the momentum fluxes resulting from this speed up (slowing down) of the
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Figure 3.5: (a) Contours of Fy(f,n) in a (0, n) polar plot (n radial and # azimuthal). This
figure shows the magnitude and sign of the vorticity flux induced by waves with phase lines
oriented at an angle 6 to the y axis in the presence of an infinitesimal mean flow perturbation
of total wavenumber n when 8 = 0. The contour interval is 3 x 10~ and note that Fo(0,n) is
independent of . (b) Contours of the normalized F2(0,n)/n* show the O(3?) correction to
Fo(6,n) for the case of zonal jet perturbations (p = 0°). The contour interval is 0.02. (c) Same
as (b) but for non-zonal perturbations with ¢ = 15°. The contour interval is 0.04. In all panels
the forcing is isotropic (p = 0), solid (dashed) lines indicate contours with positive (negative)
values, the thick line is the zero contour, the radial grid interval is An = 0.25 and the 30° wedge
is marked (dashed-dot). In panels (a) and (b) the zero contour is the curve 4sin®6 = 1 + n?
(see Appendix F).
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Figure 3.6: Eddy feedback factor f, as a function of n for 8 = 0.1 and isotropic forcing. Note
that the fluxes are upgradient (i.e. fr > 0) for all mean flow wavenumbers n. Shown is f, for
» =0° and ¢ = 60° (solid lines), as well as the asymptotic expression (3.16) (dash-dot) derived
for the feedback factor in the limit 8 < 1 and 8/n < 1.

wavepackets is positive in the region of excitation leading to upgradient fluxes
(F2 > 0). The opposite happens for pairs with |6] < 30° (cf. Fig. 3 of Bakas
and Toannou (2013b)), however the downgradient fluxes produced are smaller
than the upgradient fluxes, leading to a net positive contribution when integrated
over all angles. Figure 3.5b, shows that this result is valid for larger mean flow
wavenumbers as well.

Consider now the case of a non-zonal perturbation (Fig. 3.5¢). We observe that
the angles for which the waves have significant positive or negative contributions
to the vorticity flux feedback are roughly the same as in the case of zonal jets.
In addition, the vorticity flux feedback factor decreases with the angle ¢ of
the non-zonal perturbations (cf. (3.16)). As a result, zonal jet perturbations
always produce larger vorticity fluxes compared to non-zonal perturbations and
are therefore the most unstable in the limit § <« 1. Additionally, these results
show that for 8 <« 1, the mechanism for structural instability of the non-zonal
structures is the same as the mechanism for zonal jet formation, which is shearing

of the eddies by the infinitesimal mean flow.

3.4.2 INDUCED VORTICITY FLUXES WHEN [ > 1

When 3 > 1 by inspecting (3.14) we expect that f, should fall as 3~2. This indeed
is the case, as we will demonstrate, for zonal jet perturbations. However, non-zonal
perturbations may render D, = 0 and in that case, as we will show, the eddy

feedback f, again falls, but as 57! or for some special non-zonal perturbations
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Figure 3.7: (a) Contours of F(#,n) in a (f,n) polar plot (n radial and 6 azimuthal) for
isotropic forcing and 8 = 200. This panel shows the vorticity fluxes induced by waves with
phase lines oriented at an angle 6 in the presence of a non-zonal perturbation with mean flow
wavenumber n and ¢ = 15°. Solid (dashed) lines indicate contours with positive (negative)
values, the contour interval is 2.5 x 107® and the thick line is the zero contour. (b) Locus of
the roots of D2(0,n) on the (6,n) plane for non-zonal perturbations with ¢ = 15°. The roots
correspond to resonant interaction between waves with phase lines oriented at an angle 6 and
non-zonal perturbations with mean flow wavenumber n. Thick solid (dashed) lines indicate
whether the vorticity fluxes produced by the resonant waves are upgradient (downgradient). The

radial grid interval in both panels is An = 0.25.

even as 7 1/2.

Consider first the emergence of non-zonal structures in the limit 5 > 1. The
contribution of each Fourier component of the forcing to the vorticity flux feedback
F for the case of non-zonal structures at 8 = 200 is shown in Fig. 3.7a. In contrast
to the cases with 8 < 1 (or = O(1), discussed in section 3.4.3), there is only a
small band of Fourier components that contribute significantly to the vorticity
flux feedback, as indicated with the narrow tongues in Fig. 3.7a. The reason for
this selectivity in the response is that for 8 > 1 the components that produce
appreciable fluxes, as seen from (3.14), are concentrated on the (6, n) curves that

satisfy Dy = 0 (shown in Fig. 3.7b) or equivalently for the (6,n) that satisfy the
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Figure 3.8: (a) The curves separating the regions in the (n, ¢) plane for which D5 has no roots
(region D), 2 roots (region B) and four roots (regions A and C). Waves with 6 corresponding
to two out of the four roots of Dy found in region A produce upgradient fluxes. (b)-(d) The
vorticity fluxes F as a function of the angle 6 subtended by the phase lines of the waves and
the y axis in the presence of a non-zonal perturbation with ¢ = 15° at 8 = 200. The mean flow
wavenumber is (b) n = 0.25 (in region D), (¢) n = 0.5 (in region B), (d) n» = 0.592 (in region A)
and (e) n = 0.75 (in region A). The resonant angles (i.e. the roots of D2) are marked by upper
(lower) triangles when the waves induce upgradient (downgradient) fluxes. Note that the scale
in (b) is much smaller.

resonant condition wy + wn = wiin (cf. (E.20)). This is the resonant condition
satisfied when a Rossby wave with wavevector k and frequency wy forms a resonant
triad with the non-zonal structure with wavevector n and frequency w,. We
concentrate our analysis to these “resonant contributions” because they dominate
the eddy feedback of non-zonal perturbations for 5 > 1.

Resonant triads do not occur for all mean flow perturbations n. For (n,¢)
in region D of Fig. 3.8a, D2 has no roots and therefore there are no Fourier
components with k = (cos,sinf) that form a resonant triad with the mean
flow perturbation n and the eddy feedback is determined by the sum over the
non-resonant contributions as illustrated in Fig. 3.8b. In region B of Fig. 3.8a,
there are only two resonant angles 6. The resonant and non-resonant contribution

for a typical case in region B is shown in Fig. 3.8c. Note that it is the resonant
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contributions that determine the eddy feedback. However, they produce a negative
eddy feedback (a downgradient tendency), which is stabilizing, a result that holds
for all (n, ¢) in region B. In regions A and C, there exist four resonant angles 6
which dominate the vorticity flux. In C all resonant contributions are stabilizing
and therefore C is also a stable region. In region A, which at most extends to
© = 60° (cf. Appendix F), two of the four resonances give positive contributions
to f (cf. Figs. 3.8d,e). Therefore only for (n, ) in region A, does a destabilizing
eddy feedback occur. The largest destabilizing feedback occurs when the positively
contributing resonances are near coalescence (i.e. as in Fig. 3.8d), which occurs for
(n, ) close to the curve separating regions A and B. The reason is that when the
resonances are apart, as in Figs. 3.8c,e, the significant contributions come from
near-resonant waves with angles within a band of O(1/f3) around the resonant
angles and the integrated resonant contributions to the vorticity flux are O(1/0).
However, when the resonances are near coalescence, as for the case shown in
Fig. 3.8d, the band of near-resonant waves contributing significantly increases
as the integrand assumes a double humped shape and, as shown in Appendix F,
the destabilizing vorticity flux feedback becomes O(1/+/5). Note that as 8 — oo,
the width over which we have significant contributions diminishes and therefore
fr — 0 unless an infinite amount of energy is injected exactly at the resonant
angles (as is assumed in modulational instability studies).

It can be shown (cf. Appendix F) that the resonant contribution for g > 1

asymptotically approaches

Ny 7TN TN

Z

, (3.17)
= 2Dy o/

where the subscript j indicates the value of the functions at the j-th out of the
N, roots of Dy and p = 93,Ds. The values Nj, Dy ;, p; are all O(1), whereas 7; is
always positive and the only quantity that has dependence on S. It is O(1) only
for (n, ) just above the separating boundaries of regions A and B and regions
B and D in Fig. 3.8a yielding fT(R) ~ 1/4/B and is O(1/+/5) elsewhere yielding
fﬁR) ~ 1/, as also qualitatively described above. The sign of the j-th resonant
contribution to the total eddy feedback depends only on the sign of N;. For
(n, ¢) just above the boundary separating regions B and D, N; < 0 and f, attains
its minimum value, which corresponds to the largest stabilizing tendency. This

is illustrated in Fig. 3.9, showing the eddy feedback f, as a function of n. For
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Figure 3.9: Eddy feedback f, as a function of n for 8 = 200. Positive (negative) values
correspond to upgradient (downgradient) fluxes. Shown is f,. for ¢ = 0° (multiplied by 3?) and
for ¢ = 15° (multiplied by ). Also the asymptotic expressions (F.18) for ¢ = 0° and (3.17) for
¢ = 15° are shown (dash-dot). The crosses mark the mean flow wavenumbers n = 0.43 and
n = 0.59 that separate regions A, B and D in Fig. 3.8a for p = 15°.

(n, ) just above the boundary separating regions A and B, coalescence of the
two positive contributing resonances occurs and f, attains its maximum value,
which corresponds to the largest destabilizing tendency. For small mean flow
wavenumbers n (corresponding to region D) the eddy feedback is negative and
O(372) due to the absence of resonant contributions.

An interesting exception to the results discussed above occurs for the important
case of zonal jet perturbations (¢ = 0°). In that case, N = 0 in (3.17) as the
roots of Dy and N coincide and the resonant contribution (3.17) is exactly zero.
As shown in Fig. 3.10, positive vorticity flux feedback is obtained from a broad
band of the non-resonant Fourier components with v = 6 ~ 0°, corresponding
to waves with lines of constant phase nearly aligned with the y axis (remember
that for smaller 8 the region that produces destabilizing fluxes extends up to
0] ~ 30°). For large 8 the vorticity flux f, is always destabilizing for all zonal
jet perturbations with n < 1, as shown by (F.18) and Fig. 3.9, and the largest
destabilizing vorticity flux, frmax = (2 4+ @)872, is obtained for jets with the
largest allowed scale. The reason for the weak fluxes and the preference for the
emergence of jets of the largest scale in this limit is understood by noting that
the stochastically forced eddies for 5 > 1 propagate with O(8) group velocities.
Therefore in contrast to the limit of § < 1 in which they evolve according to their
local shear, the forced waves respond to the integrated shear of the sinusoidal
perturbation over their large propagation extend, which is very weak.

To summarize: Although zonal jets and most non-zonal perturbations induce
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Figure 3.10: Contours of F(6,n) in a (0,n) polar plot (n radial and § azimuthal) for zonal
jet perturbations (¢ = 0°) and 8 = 100. Solid (dashed) lines indicate contours with positive
(negative) values, the contour interval is 2 X 104, the thick line is the zero contour and the
radial grid interval is An = 0.25.

fluxes that decay as 1/3% for large 3, resonant and near resonant interactions
arrest the decay rate of certain non-zonal perturbations by a factor of O(3%/?)
leading to fluxes that decay as 1/4/3. This makes the non-zonal perturbations to
be the most S3T unstable perturbations for 8 > 1. Also in contrast to § < 1
when f, is positive for all n and ¢ (cf. Fig. 3.6), the vorticity flux feedback is
negative for (n, ) in regions B and D of Fig. 3.8a. As a result, the mean flows
that produce negative fluxes and are by necessity S3T stable are interestingly in
the interior of the dumbbell shown in Fig. 3.11, illustrating f, in a polar (n, ¢)
plot. The largest destabilizing fluxes occur in the narrow region adjacent to
the outer boundaries of the dumbbell shape, which demarcates the boundary
separating regions A and B. Because of the selectivity of the resonances these

results do not depend on the forcing anisotropy, as we will see in the next section.

3.4.3 INDUCED VORTICITY FLUXES FOR 3 ~ O(1)

We have seen that in the singular case of isotropic forcing the only process available
for the emergence of mean flows is the fourth-order anti-diffusive vorticity feedback
induced by the variation of the group velocity of the forced eddies due to the mean
flow shear. For § < 1, the waves interact with the local shear producing fluxes
proportional to 42 d*6U/dy*. As B increases this growth is reduced since the waves
interact with an effective integral shear within their propagation extent which is
weak and eventually, as we have seen in the previous section, for 8 > 1 the fluxes
decay as B72. Therefore, the fluxes attain their maximum at an intermediate

value of B. This occurs for § ~ 3.5, as can be seen in Fig. 3.12a where the
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Figure 3.11: Contours of the eddy feedback f, in a (,n) polar plot (n radial and ¢ azimuthal)
for the case f§ = 200. Shown are contours of positive values, so the white area corresponds to
negative values indicating downgradient vorticity fluxes. The contour interval is 102 and the
radial grid interval is An = 0.25. Note that the feedback factor is always negative (downgradient
fluxes) for ¢ > 60° (cf. Appendix F).
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Figure 3.12: The maximum value of f, over all wavenumbers n for zonal jets (solid), and
the maximum value of f,. over all wavenumbers n and angles ¢ # 0° for non-zonal perturbations
(dashed) as a function of the planetary vorticity, 8 for the three forcing covariance spectra seen
in Fig. 3.1 and for u = 1/4. Also shown are the asymptotic expressions (F.4), (F.6) and (F.19)
(dash-dot) and the 8~'/2 slope (dotted). For u = —1 zonal jet perturbations are stable for
B < 1.67. (b) The mean flow wavenumber n and (c) the angle ¢ for which the maximum value
of f. (shown in (a)) is attained. The asymptotes n = 1/v/2 (for § < 1) and n = 0.5 (for 3> 1)
are shown in (b) (dash-dot) as well as the asymptote ¢ = 10° (for 8> 1) is also shown in (c)
(dash-dot).
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Figure 3.13: Contours of the F(6,n) in a (6, n) polar plot (n radial and 8 azimuthal). Shown
is (a) F for a zonal jet perturbation (¢ = 0°) and (c) a non-zonal perturbation with ¢ = 15°
when 8 = 2. Panels (b) and (d) are the same as (a) and (c) for the case 8 = 12. In all panels,
solid (dashed) lines indicate contours with positive (negative) values, the contour interval is
2 x 1073, the thick lines indicate the zero contour and the radial grid interval is An = 0.25.
White dashed lines in (c), (d) correspond to the locus of the roots of D2(6,n) on the (6, n) plane.

maximum f, over all (n,¢) is shown. It is demonstrated in the next section that
this intermediate 8 maximizes the S3T instability for all forcing spectra.

While the eddy—mean flow interaction of both zonal and non-zonal perturbations
is dominated by the same dynamics when § < 1, for 8 > 1 the eddy—non-zonal
flow interaction is dominated by resonances which do not occur for zonal flow
perturbations. The resonant interactions lead to the possibility of arrested decay
of the eddy feedback at the rates of 571/2 and 71, instead of the 572 decay in the
absence of resonances. The vorticity flux attains its maximum at an intermediate
value 8 ~ O(1) for non-zonal mean flows as well, which is nonetheless large enough
for the resonant contributions to reinforce the contribution from the shearing
mechanism. Figure 3.13 shows the contribution to the eddy feedback induced
by the various wave components that are excited for two values of 8 (8 = 2 and
f = 12) in the case of zonal jets (¢ = 0°) and non-zonal perturbations (¢ = 15°).
As 8 increases, the resonant contributions start playing an important role for
non-zonal perturbations as there is enhanced contribution to the eddy feedback
in the vicinity of the Dy = 0 curves, indicated by the white dashed lines. These

resonant contributions enhance the vorticity fluxes relative to the fluxes obtained
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for zonal jets and render the non-zonal structures more unstable compared to
zonal jets when 2 3.5 (Bakas and Ioannou, 2014).

3.5 EFFECT OF ANISOTROPIC FORCING ON S3T INSTABILITY

In this section we investigate the effect of the anisotropy of the excitation on
the S3T instability. The maximum vorticity flux feedback f, for three cases of
anisotropy (¢ = +1 and p = 1/4) and for isotropic forcing (x = 0) is shown in
Fig. 3.12a. For 8 > 1, the main contribution to f, for zonal jet perturbations,
comes from forced waves with nearly meridional constant phase lines (angles near
0 =~ =0°, cf. Fig. 3.10). Therefore, the eddy feedback f,, attains larger (smaller)
values for a stochastic forcing that injects more (less) power in waves with angles
near v = 0°, that is for positive (negative) anisotropicity factor u (cf. Fig. 3.1).
The maximum value of f,. over all wavenumbers n depends in this case linearly

on 4 (cf. Appendix F),

fr,max = (2 + IJ/)IB—Z + O(/B_4) . (318)

For non-zonal perturbations, the main contribution comes from forced waves
satisfying the resonant condition wy + wn = wiiy and f, depends only on the
sum of the resonant contributions. The sign of N that determines whether the
resonant contribution is positive or negative (cf. (3.17)), depends only on the
sign of sinf; + n/2 and not on the anisotropicity factor u (cf. (E.19c)). The
anisotropicity affects only the magnitude of Aj. For any 0 < ¢ < 90° it is found
that the resonances giving positive contribution occur at angles ¢; for which
1vj| = 165 — | < 45°. A stochastic excitation, which injects more power near
v = 0° (u > 0) gives larger positive resonant contributions and therefore f,
increases with p. However, the effect on the maximum vorticity feedback is weak,
as the spectral selectivity of the resonances renders the characteristics of the most
unstable non-zonal structure independent of the spectrum of the forcing. That is,
the (n, ) that correspond to the maximum f, asymptotes to n = 0.5, ¢ ~ 10°
(marked with star in Fig. 3.8a) as 5 — oo, a result that is very weakly dependent
on pu (cf. Figs. 3.12b,c).

For g <« 1, the characteristics of the S3T instability are dependent on the
anisotropy of the stochastic forcing. The eddy feedback is at leading order
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proportional to pu:

g = g (1= ) cos(2p) + O(5?) (3.19)

This shows that there can be upgradient vorticity fluxes leading to S3T instability
for § = 0 as long as pcos(2p) > 0. For g > 0, the maximum f, = ©/32 is
achieved by zonal jets (¢ = 0°), while for x4 < 0 any non-zonal perturbation with
¢ > 45° can grow, with the maximum f, = |u|/32 achieved for ¢ = 90° when the
non-zonal perturbations assume the form of jets in the y direction (meridional
jets) (cf. Fig. 3.12c).

It is worth noting that Srinivasan and Young (2014) also find that that the
eddy momentum fluxes are proportional to p when a constant shear flow is
stochastically forced with power spectrum (3.11). This result is intriguing as the
two studies address two different physical regimes. This chapter treats the limit
appropriate for emerging structures in which the shear time is far larger than the
dissipation time-scale with the fluxes determined by the instantaneous response
of the eddies on the shear. Srinivasan and Young (2014) study the opposite limit
in which the mean flow shear is finite and the shear time is much shorter than
the dissipation time-scale with the fluxes determined by the integrated influence
of the shear on the eddies over their whole life cycle, which may include complex
effects such as reflection and absorption at critical levels.

In summary:

a. The S3T instability of the homogeneous state is a monotonically increasing

function of y for all 8

b. The forced waves that contribute most to the instability are structures
with small v, i.e., waves with phase lines nearly aligned with the y axis, as
Fig. 3.1a.

c. The anisotropy of the excitation affects prominently the S3T stability of
the homogeneous state only for 8 < 3.5.

3.6 BIBLIOGRAPHICAL NOTE

This chapter is an excerpt from the paper by Bakas et al. (2015). The S3T
instability of the homogeneous turbulent equilibrium was studied by Farrell and

Ioannou (2007). Analytical results for zonal jet perturbations for 8 = 0 and finite
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doubly periodic domains were obtained by Bakas and Ioannou (2011). Results
for infinite -planes and for any 3 were obtained by Srinivasan and Young (2012).
The forcing spectrum used in this chapter was introduced by Srinivasan and
Young (2014). The dispersion relation for the stability of non-zonal perturbations
was derived by Bakas and Ioannou (2013a). A physical interpretation of the S3T
instability of the homogeneous equilibrium to zonal jet perturbations for small 3

and n is discussed in Bakas and Ioannou (2013b).
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A note on non-dimensional units used in the

following chapters

In the next chapters we will not scale our fields and parameters as described
in (2.3). Instead, we will non-dimensionalize everything using typical values
that correspond to the Earth’s midlatitude atmosphere, that is a length scale of
L = 5000 km and a velocity of U = 40 ms~!. Using this scales the time unit
is T' = 1.5 day and the Earth’s meridional planetary vorticity gradient at the
midlatitudes corresponds to the non-dimensional value g = 10.

All numerical simulations that will be presented in the following chapters will be
implement using periodic boundary conditions on a 8-plane with non-dimensional
size L, = L, = 27. Therefore non-dimensional wavenumbers assume only integer

values.
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Relation of the S3T system with the 4MT
system of the modulational instability of

Rossby waves

In this chapter we investigate the relation of the modulational instability (MI) of
Rossby waves with the S3T theory regarding the emergence and equilibration of
large-scale structures in -plane turbulence. It was established by Lorenz (1972)
and Gill (1974) that Rossby waves are hydrodynamically unstable, and under
certain conditions the greatest instability is a zonal jet. This instability is an
instability that has been characterized in the literature as a MI because of its
similarity with the Benjamin-Feir instability of surface gravity waves (Benjamin,
1967; Yuen and Lake, 1980). More recently this instability has been proposed to
be the mechanism for the formation of zonal jets in barotropic but also baroclinic
turbulence (Berloff et al., 2009; Connaughton et al., 2010), in the sense that at
the Rhines’s scale the turbulent state is dominated by relatively coherent wave
structures that become modulationally unstable and give rise to jets. In this
chapter we demonstrate the formal equivalence between the 4MT system, that

approximates well the MI of coherent Rossby waves, and the S3T instability of a
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homogeneous turbulent state that has the power spectrum of the Rossby wave
that undergoes MI. This equivalence embeds the MI results into the more general
and physical framework of S3T which can address the instability of more general
states, like the structural instability of the attractor of a turbulent flow. We also
compare the predictions of the 4MT and S3T systems with nonlinear simulations
regarding the initiation of the MI and its equilibration. We demonstrate that
the 4MT dynamical framework is inadequate for capturing the finite amplitude

equilibration of the instabilities.

4.1 MI orF A ROSSBY WAVE AND THE 4MT APPROXIMATION

Consider the stability of a Rossby wave with streamfunction ¢, = A cos(p-x—wpt)

(and vorticity (p = —p2¢p) that satisfies the inviscid barotropic vorticity equation:

8t<p+!](¢p7€p+6'x) =0. (4'1)

The stability of these nonlinear traveling wave solutions, referred to in MI studies
as the primary waves, is addressed by perturbing the primary wave , i.e., by
writing ¢ = (p + 6¢ and studying the evolution of the perturbation 6¢ in the

linear approximation,

Oy 5C = ﬁ(Cp) 5C s (4'2)

where £((p) is a time-dependent linear operator. With the change of the frame
of reference: A
X0 =X — (inf)t , (4.3)
p
the primary wave assumes the stationary form: i, = A cos(p - x¢), and the
operator £ becomes time-independent but with the spatial periodicity of the

primary wave. The eigensolutions of (4.2) according to Bloch’s theorem, are
8Ca(x0,t) = e*nte™X0 g(xq) | (4.4)

and each eigenfunction is indexed by a wavevector n which satisfies |n| < |p|/2.
The function g is a periodic function with the periodicity of the primary wave vy

(cf. Appendix D, eq. (D.7)), and can be assumed in the form:

—+00
g(x0) = Y apemP (4.5)

m=—00
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In the original coordinates, because:

+o0o
g(x0) > g (x = (@ x B)t/p?) = D am et (4.6a)

m=—00

PRE SN 6in~[x—(i><f}) t/pg] _ ei(l—n2/p2)wnt6i(n-x—wnt) ’ (46b)

(wk denotes the frequency of a Rossby wave k, cf. (3.6)), the eigenfunction n can

be written as

5Ca(x,t) = eontell=n?/p)ont sl (x ¢) (4.7)
with
A . +m .
6CH(X,t) _ aoel(n-xfwnt) + Z am 61[(n+mp)-xf(wn+mwp)t] ) (48)
"m0

Written in this form the eigenfunction (4.8) is a superposition of a nonlinear Rossby
wave solution of (4.1) (the ag harmonic) and satellite modes with wavenumbers
n+mp, m=1,2,..., that are Rossby wave solutions only when wy + mwp =
Wntmp-

By inserting (4.4)-(4.5) into (4.2) an infinite homogeneous linear system for the
coefficients a,,, is obtained. The eigenvalues s, are obtained from the requirement
that this system has non-trivial solutions. This implies that the s, are roots of
the associated characteristic polynomial, which is nominally of infinite degree.
However, because the physically realizable solutions correspond to the convergent
series (4.8), the coefficients of physically realizable eigenfunctions will have the
property that a,, — 0 as m — 4oo; actually a,, ~ b"/m! for some constant
b (Lorenz, 1972). This enables us to determine accurate approximations of the
eigenvalues from finite truncations of this infinite system. One obtains a good
approximation of the eigenvalue even if only terms up to |m| = 1 are kept. This
truncation is referred to as the 4 mode truncation, or “4MT” system, because
only four waves are allowed to interact: the primary wave p and perturbation
waves n, n+ p. It can be also shown from a Fjgrtoft type argument that unstable
eigenvalues with s, = Re(s) > 0 exist only for |n| < |p| (Lorenz, 1972). The

instability manifests as a modulation of the amplitude, as shown in Fig. 4.1.
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(a) t=0/s,, En/E,=0.01 (b)t=25/s,, En/E,=0.12 (¢c) t=4/s,, En/E, =055
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Figure 4.1: Modulational instability of a primary wave f(x,t) = cos (kz — wyt) with k = 10
to a large-scale perturbation & f(z,t) that grows at rate s,: §f(z,t) = 0.1e*"* cos (nx — wy,t) with
n = k/5. Solid lines correspond to f + ¢ f while dash-dotted lines correspond to the unperturbed
/. Initially the “energy” of large-scale perturbation, F,,, is 1% of the “energy” of the finite
amplitude of the primary wave, E,. The instability manifests as a modulation to the wave
amplitude of the primary wave (cf. panel (b)).

4.2 EQUIVALENCE OF THE MI IN THE 4MT APPROXIMATION AND THE S3T
STABILITY OF A HOMOGENEOUS TURBULENT STATE

There is a close relation between the 4MT approximation of the MI and the
S3T. Parker and Krommes (2019) have shown that in the inviscid limit there is
a formal equivalence between the modulational instability of the Rossby wave,
Yp = A cos(p-x —wpt), in the 4AMT approximation with the S3T instability of the
homogeneous state with eddy vorticity covariance with the same power spectrum
as the Rossby wave, i.e., with C¢(k) = (2r)%p*|A|? [6(k — p) + 6(k + p)]. The
connection is formal because physically the two problems are very different. In
MI the stability of a basic state in the form of a coherent Rossby plane wave is
studied, while S3T addresses the statistical stability of an incoherent state with
equilibrium covariance having the power spectrum of the Rossby wave. In that
sense, as noted by Parker and Krommes (2019), S3T stability analysis embeds
the modulational instability results into a more general physical framework.

We proceed here to show that this result does not only hold for monochromatic
waves but can be generalized to any solution of the barotropic vorticity equation.
That is, we show the formal equivalence between the MI of any time-dependent
solution of the barotropic equations with stationary power spectrum in the dynam-
ical framework of a generalized 4AMT with the S3T instability of a homogeneous
state with the same power spectrum. The proof can be found in Appendix G.

Such a nonlinear solution of the inviscid barotropic vorticity equations is for
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example a superposition of any number of Rossby waves:

N
b= Ajcos(pj-x—wp,t) (4.9)
j=1

Ipj|=p Up;

all with the same total wavenumber!, that forms a non-dispersive structure moving
westwards (cf. Appendix G). The MI of (4.9) can be carried out in a similar
manner as described in section 4.1. The generalized 4MT system is obtained
by keeping the N primary waves, ¢, the perturbation wave, emxo and the

corresponding 2N satellite modes, el(ntp;)-xo

The eigenvalue relation in this
truncation coincides with the S3T eigenvalue relation of the equilibrium covariance

with spectral power:
. N
Ce(k) = 2m)%p* Y14, [3(k — py) + 6k +py)] - (4.10)
j=1

The MI of a base state in the form of (4.9) as well as the mechanisms responsible
for instability have been studied by Lee and Smith (2003).

4.3 COMPARISON OF MI AND S3T PREDICTIONS WITH NONLINEAR SIMULA-
TIONS FOR THE EMERGENCE AND EQUILIBRATION OF JETS

Connaughton et al. (2010) compared the predictions of the 4AMT system with
direct numerical simulations and found that the 4MT system captures the initial
growth of the instability, but fails to predict the later stages of zonal flow evolution.
Contrary to the 4MT system, S3T dynamics capture both the emergence of the
large-scale flow instability and also its equilibration. Here we present an example
of jet emergence and equilibration as predicted by the 4AMT and S3T systems and
compare them with nonlinear simulations of the barotropic vorticity equation.
Details regarding the methods used for performing the numerical simulations can
be found in Appendix C.

We start by performing a simulation of the inviscid and unforced version of
the NL system (2.1), referred to as NLj,,. We initiate the simulation with a state
(x,t = 0) that consists of a primary wave 1, = Acos(p-x) with p = (7,0)
and energy E,(t = 0) =2 x 1073 and a zonal jet perturbation ¢y, = acos (n - x)

!The vorticity of (4.9), A1) = —p21, is proportional to ¢ and as a result J(¢, Ay)) = 0.
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with n = (0,3) and energy E,,(t = 0) = 107 = 0.5 x 1077E,(t = 0). This
n = (0,3) zonal flow perturbation has been chosen because it is predicted by
both S3T or 4MT to be the most unstable large-scale structure. We also perform
a 4MT simulation which is initiated with the initial state of the NL;,,. In the
4AMT dynamics we allow only interactions between the Fourier components with
wavenumbers +p, +n and +(n =+ p). The evolution of the zonal mean flow energy,
E,,, in the two simulations is plotted in Fig. 4.2; for comparison we also plot the
growth of the energy of the emerging instability as predicted by S3T (or 4MT).
Snapshots of the evolution of the flow streamfunction, ¢, are shown in Fig. 4.3
(NLiny) and Fig. 4.5 (4MT), for the time instants marked in Fig. 4.2. Additionally,
we perform an integration of the stochastically forced—dissipative NL system (2.1),
in which the forcing excites structures cos (p - x + 6) with 6 a randomly chosen
phase. (The spatial covariance of this forcing is Q(x, — xp) ~ cos[p - (x4 — Xp)].)
For the chosen coefficient of linear damping, r, the energy input rate, e, is
adjusted so that the steady state equilibrium total energy of the stochastically
forced flow is equal to the total energy of the primary wave of NL;,, and 4MT,
ie., e = 2rE,(t = 0) (cf. (A.22)). The evolution of the zonal mean flow as
well as snapshots of the flow streamfunction are shown in Fig. 4.2 and Fig. 4.4

respectively.
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Figure 4.2: Evolution of the zonal energy E,(k; = 0) in the 4MT system (solid red line),
the NLijnv system (dash-dotted green line) and the forced—dissipative NL system (solid black
line). Both the NLj,, and 4MT systems are initiated with a plane wave with wavenumber
p = (7,0) and E,(t = 0) = 2 x 107® and a zonal jet perturbation with wavenumber n = (0, 3)
and energy En(t = 0) = 107°. The parameters for the NL are: linear damping coefficient
r = 0.01, stochastic forcing with single harmonics with wavenumber p and energy injection rate:
€ =2rE,(t =0) =4 x 107°. The predicted growth of the n = (0,3) zonal jet perturbation by
S3T is shown with the dashed line. Remarkably, the energy En,(t) of the mean flow grows at the
same rate in the unforced and inviscid NLin, and the forced—dissipative NL. Typical snapshots
of the streamfunction fields for the three simulations are shown in Fig. 4.3 (NLiny), Fig. 4.4
(NL) and Fig. 4.5 (4MT), for the times marked with circles. Both the S3T and 4MT predict the
initial growth of the mean flow but the 4MT fails to capture the finite amplitude state of the
system. In all simulations 8 = 4.9.
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Figure 4.3: Snapshots of streamfunction 1(x,t) together with the zonally averaged zonal
velocity U(y,t) (thick black line) for the NLj,, system at the indicated times with circles in
Fig. 4.2. Initially the zonal mean perturbation n = (0, 3) grows to finite amplitude (panels
(a)-(c)) and at t ~ 200 the zonal flow reorganizes and becomes a (1,4) westward traveling wave

(panels (d)-(f)).
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Figure 4.4: Same as Fig. 4.3 but for the stochastically forced-dissipative NL system.
Remarkably, the NL system exhibits the same large-scale structure evolution with the NLj,y
and transitions at approximately the same time to a (1,4) traveling wave structure.
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Figure 4.5: Snapshots of streamfunction 1(x,t) together with the zonally averaged zonal
velocity U(y,t) (thick black line) for the 4MT system at the indicated times with circles in
Fig. 4.2. Initially the zonal mean perturbation n = (0,3) grows to finite amplitude but then it
alternates between a state with strong zonal mean flow component (i.e. panel (d)) and a state
with weak zonal flow component (i.e. panel (e)).
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Initially the zonal mean flow E,,(¢) in the NLj,, and NL grows at the rate
predicted by the S3T and 4MT stability analysis. In both the NL and NLj,, the
amplitude of the zonal flow reaches a plateau and then the flow reorganizes at
t ~ 220 producing a traveling wave moving westwards with maximal power at
wavenumber (1,4) (cf. Fig. 4.3e,f). Remarkably, the forced-dissipative NL under-
goes the same flow reorganization to a traveling wave mean flow at approximately
the same time as the NLj,, (cf. Figs 4.2 and 4.4). The 4MT system however, fails
to capture this structural reorganization of the flow. Instead, it oscillates between
a state with a strong zonal mean flow component (i.e. Fig. 4.5d) and a state with
weak zonal mean flow component (i.e. Fig. 4.5¢) that have no reflection in the
NLipy.

In order to investigate whether the S3T system is able to produce the NL large-
scale flow state we perform a forced—dissipative S3T time integration of (2.13)
with the parameters of the NL simulation. Snapshots of the large-scale flow
streamfunction, ¥, that emerges in the S3T simulation are plotted in Fig. 4.7.
First a zonal mean flow emerges, the zonal flow equilibrates producing finite
amplitude jets, which then become unstable and give way to a traveling wave
with structure similar to that of the NL simulation (see Fig. 4.7e,f).

At this point we want to emphasize that the S3T that succeeded to faithfully
produce the NL flow state was the S3T system (2.13) in which the ensemble mean
was identified with an average over fast time scales. The simplest S3T system
in which the ensemble mean is identified with a zonal mean, that we denote
as S3Tz and obeys equations (2.21), is able to reproduce the initial instability
and equilibration of the zonal jet but is incapable to capture the transition to a
non-zonal large-scale flow and instead it equilibrates to a zonal jet state with 3
jets (see Fig. 4.8). A comparison of the evolution of the zonal mean flow energy
for the S3T and S3Tz systems is shown in Fig. 4.6. The S3Tz system mean flow
energy evolution initially coincides with the S3T energy evolution and at ¢ = 150
the two energy evolutions diverge: the S3Tz system is attracted to a zonal jet
mean flow while the S3T system transitions to a turbulent state characterized by
a traveling wave mean flow with most power at wavenumber (1,4).

The stationary statistical equilibrium that the S3Tz system is attracted is also
a stationary state of the S3T system and it can be shown that is unstable to
non-zonal mean flow perturbations. With the methods described in chapter 6 we
determine that the most unstable eigenfunction of the large-scale flow corresponds

to a traveling wave with wavenumber (1,4) (cf. section 6.2). This demonstrates
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Figure 4.6: Evolution of the zonal energy E,,(k, = 0) in logarithmic scale (panel (a)) and in
linear scale (panel (b)) in the 4MT system (solid red line), the NL system (black red line), the
S3T system (blue solid line) and the S3Tz system (dashed line). It can be seen that the S3T
prediction follows closely the NL. The S3Tz system mean flow energy evolution initially coincide
with the S3T evolution and at ¢t =~ 150 the two systems diverge. The S3Tz system equilibrates to
a zonal mean flow statistical equilibrium while the S3T system transitions to a traveling wave
mean flow with most power at wavenumber (1,4). For all integrations the planetary vorticity
gradient is § = 4.9. Circles mark the time instants for the snapshots plotted in Figs. 4.4, 4.5, 4.7

and 4.8.

that the final state of the NL is an equilibrated secondary instability of the S3T

dynamics.
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Figure 4.7: Snapshots of mean flow streamfunction ¥(x, t) together with the zonally averaged
zonal velocity U(y,t) (thick black line) for the S3T system at the indicated times with circles in
Fig. 4.6b. Initially a zonal mean flow emerges and equilibrates to finite amplitude (panel (d)).
This state however becomes unstable and transitions to a traveling wave with structure similar
to that of the NL.
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Figure 4.8: Snapshots of mean flow streamfunction ¥(y,t) together with the zonally averaged
zonal velocity U(y,t) (thick black line) for the S3Tz system at the indicated times with circles
in Fig. 4.6b. In the S3Tz system the mean flow is by construction xz-independent and therefore
is able to reproduce the initial instability and equilibration of the zonal jet but is incapable to
capture the transition to a non-zonal large-scale flow. Instead the zonal flow initially grows and
then equilibrates to a zonal jet state with 3 jets.
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Emergence and equilibration of jets in
B-plane turbulence as predicted by S3T and

its reflection in nonlinear simulations

5.1 INTRODUCTION

Stochastic structural stability theory (S3T) addresses turbulent jet dynamics as a
two-way interaction between the mean flow and its consistent field of turbulent
eddies (Farrell and Toannou, 2003). The mean flow is supported by its interaction
with a broad turbulence spectrum through non-local interactions in wavenumber
space. In fact, S3T is a non-equilibrium statistical theory that provides a closure
comprising a dynamics for the evolution of the mean flow together with its
consistent field of eddies. In S3T the dynamics of the turbulence statistics
required by this closure are obtained from a stochastic turbulence model (STM),
which provides accurate eddy statistics for the atmosphere at large scale (Farrell
and lIoannou, 1993, 1994, 1995; Zhang and Held, 1999).

Marston et al. (2008) have shown that the S3T system is obtained by truncating
the infinite hierarchy of cumulant expansions to second order and they refer to

the S3T system as the second order cumulant expansion (CE2). In S3T, jets
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initially arise as a linear instability of the interaction between an infinitesimal
jet perturbation and the associated eddy field and finite amplitude jets result
from nonlinear equilibria continuing from these instabilities. Analysis of this jet
formation instability determines the bifurcation structure of the jet formation
process as a function of parameters. In addition to jet formation bifurcations, S3T
predicts jet breakdown bifurcations as well as the structure of the emergent jets,
the structure of the finite amplitude equilibrium jets they continue to, and the
structure of the turbulence accompanying the jets. Moreover, S3T is a dynamics
so it predicts the time dependent trajectory of the statistical mean turbulent
state as it evolves and, remarkably, the mean turbulent state is often predicted
by S3T to be time dependent in the sense that the statistical mean state of the
turbulence evolves in a manner predicted by the theory (Farrell and Ioannou,
2009b). The formation of zonal jets in planetary turbulence was studied as a
bifurcation problem in S3T by Farrell and Ioannou (2003, 2007, 2008, 2009a,c);
Bakas and Ioannou (2011); Srinivasan and Young (2012); Parker and Krommes
(2014). A continuous formulation of S3T developed by Srinivasan and Young
(2012) has facilitated analysis of the physical processes that give rise to the S3T
instability and construction of analytic expressions for the growth rates of the
S3T instability in homogeneous -plane turbulence (Srinivasan and Young, 2012;
Bakas and Toannou, 2013b; Bakas et al., 2015). Recently, the analogy between
the dynamics of pattern formation and zonal jet emergence in the context of S3T
was studied by Parker and Krommes (2014).

Relating S3T to jet dynamics in fully nonlinear turbulence is facilitated by
studying the quasi-linear (QL) model which is intermediate between the nonlinear
model and S3T. The QL approximation to the full nonlinear dynamics (NL) results
when eddy—eddy interactions are not explicitly included in the dynamics but are
either neglected entirely or replaced with a simple stochastic parameterization, so
that no turbulent cascade occurs in the equations for the eddies, while interaction
between the eddies and the zonal mean flow is retained fully in the zonal mean
equation. S3T is essentially QL with the additional assumption of an infinite
ensemble of eddies replacing the single realization evolved under QL. Although the
dynamics of S3T and QL are essentially the same, by making the approximation
of an infinite ensemble of eddies, the S3T equations provide an autonomous and
fluctuation-free dynamics of the statistical mean turbulent state, which transforms
QL from a simulation of turbulence into a predictive theory of turbulence.

A fundamental attribute of QL/S3T is that the nonlinear eddy—eddy cascade
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of NL is suppressed in these systems. It follows that agreement in predictions
of jet formation and equilibration between NL and QL/S3T provides compelling
evidence that cascades are not required for jet formation and theoretical support
for observations showing that the turbulent transfers of momentum maintaining
finite amplitude jets are non-local in spectral space.

Previous studies demonstrated that unstable jets maintained by mean flow
body forcing can be equilibrated using QL dynamics (Schoeber]l and Lindzen,
1984; DelSole and Farrell, 1996; O’Gorman and Schneider, 2007; Marston et al.,
2008). In contrast to these studies, in this work we investigate the spontaneous
emergence and equilibration of jets from homogeneous turbulence in the absence
of any coherent external forcing at the jet scale. S3T predicts that infinitesimal
perturbations with zonal jet form organize homogeneous turbulence to produce
systematic up-gradient fluxes giving rise to exponential jet growth and eventually
to the establishment of finite amplitude equilibrium jets. Specifically, the S3T
equations predict initial formation of jets by the most unstable eigenmode of
the linearized S3T dynamics. In agreement with S37T, Srinivasan and Young
(2012) found that their NL simulations exhibit jet emergence from a homogeneous
turbulent state with subsequent establishment of finite amplitude jets, while
noting quantitative differences between bifurcation parameter values predicted
by S3T and the parameter values for which jets were observed to emerge in
NL. Tobias and Marston (2013) also investigated the correspondence of CE2
simulations of jet formation with corresponding NL simulations and found that
CE2 reproduces the jet structure, although they noted some differences in the
second cumulant, and suggested a remedy by inclusion of higher cumulants.

In this chapter we use NL and its QL counterpart together with S3T to examine
further the dynamics of emergence and equilibration of jets from turbulence.
Qualitative agreement in bifurcation behavior among these systems, which is
obtained for all the spatial turbulence forcing distributions studied, confirms that
the S3T instability mechanism is responsible for the formation and equilibration
of jets. Quantitative agreement is obtained for bifurcation parameters between NL
and QL/S3T when account is taken of the modification of the turbulent spectrum
that occurs in NL but not in QL/S3T. Remarkably, a primary component of this
spectral modification can itself be traced to S3T instability, but of non-zonal
rather than of zonal form. We investigate the formation and equilibration of these
non-zonal S3T instabilities and the effect these structures have on the equilibrium

spectrum of S-plane turbulence. We also investigate circumstances under which
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non-zonal structures are modified and suppressed by the formation of zonal jets.

A dynamic of potential importance to climate is the possibility of multiple
equilibria of the statistical mean turbulent state being supported with the same
system parameters (Farrell and Ioannou, 2003, 2007; Parker and Krommes, 2014).
We verify existence of multiple equilibria, predicted by S3T, in our NL simulations.
Finally, we show that weak jets result from stochastic excitation by the turbulence
of stable S3T modes, which demonstrates the physical reality of the stable S3T
modes. Turbulent fluctuation induced excitation of these weak local jets and
the weak but zonally extended jets that form at slight supercriticality in the
jet instability bifurcation may explain the enigmatic latent jets of Berloff et al.
(2011).

Since the emergence and equilibration of jets is addressed throughout this
chapter the zonal mean—eddy decomposition for the flow fields (2.14) is used.
Therefore the NL, QL and S3T dynamics discussed in this chapter use the zonal

mean—eddy decomposition which was presented in section 2.2. The NL system is

U =v'({ —rU , (5.1a)
(' = AU)C +0, (V) = V- (W ) +VEE, (5.1b)

with
A (U) = —Ud, — (5 - aij) AT (5.2)

the QL system is

U =v¢ —rU, (5.3a)
(' =A,U) ¢ +VeE, (5.3b)

and the S3T system (S3Tz) is

O = | 387100, 4 8,10,)C| U (5.42)
Xq=Xp
KCoap = [AraU) + App(U)] Cat + € Qui - (5.4b)

Throughout this chapter where we mention S3T we refer to the zonal mean—
eddy decomposition S3Tz system. The S3Tz system does not allow for mean flows

with non-zonal structure and therefore S3T instabilities within (5.4) are only
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zonal jet perturbations. However, as it is demonstrated in sections 5.4 and 5.5,
the emergence of non-zonal coherent structures is of great importance in the

quantitive predictions of S3Tz for jet emergence and equilibration.

5.2  SPECIFICATION OF THE STOCHASTIC FORCING STRUCTURE

Because the S3T instability mechanism that results in jet bifurcation from a
homogeneous turbulent state differs for isotropic and non-isotropic turbulence
(cf. chapter 3), we consider examples of both isotropic and non-isotropic turbulence
forcing. The jet forming instability in the case of homogeneous, non-isotropic
forcing arises from the up-gradient fluxes induced by shearing of the turbulence
by the infinitesimal perturbation jet, while the up-gradient fluxes for the case
of homogeneous isotropic forcing arise from the refraction of the eddies caused
by the variation in the potential vorticity gradient induced by the infinitesimal
perturbation jet.

Three stochastic forcing structures will be used in our investigation of the
correspondence among S3T, QL and NL dynamics. The first independently excites
a set of zonal wavenumbers. This stochastic forcing is spatially homogeneous
but not isotropic and will be denoted as NIF (non-isotropic forcing). The second
forcing, denoted IRFn, is an isotropic narrow ring forcing concentrated near a
single total wavenumber, k;. The third forcing we use, denoted IRFw, is an
isotropic ring forcing in which the forcing is distributed over a wide annular region
in wavenumber space around the central total wavenumber. Specification of these
stochastic forcing structures are given in Appendix H. Plots of the corresponding
forcing covariance power spectra together with instantaneous realizations both in
vorticity and streamfunction for the three types of forcing structures are shown in
Fig. 5.1. Note, that the IRFn ring forcing is peculiar in that it primarily excites
vortices of scale 1/ky that are evident in both the vorticity and streamfunction
fields, while IRFw produces a streamfunction field dominated by large scale

structure similar to the fields excited by the other broadband forcings.

5.3 BIFURCATIONS PREDICTED BY S3T AND THEIR REFLECTION IN QL AND
NL SIMULATIONS

We examine the counterpart in NL and QL simulations of the S3T structural

instability by comparing the evolution of the domain averaged energy of the zonal
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Figure 5.1: Contour plots of the spatial Fourier coefficients of the forcing vorticity covariances,
Qx (cf. (2.12)), used in this study and example realizations of the forcing. Panel (a): Qy for
NIF with zonal wavenumbers k, = 1,...,14 and d = 1/5. Panel (d): Qx for IRFn at k; = 14
and 6k; = 1. Panel (g) Qx for IRFw at k; = 14 and 6k; = 8/+/2. In (b), (e) and (h) are shown
realizations of these forcings in the vorticity field, and in (c), (f) and (i) are shown realizations
in the streamfunction field.

flow:

- 1 1.5 9
En(t) = LxLy/2U a2 . (5.5)

The amplitude of the zonal flow is measured with the zonal mean flow index (zmf)
defined as zmf = E,,/(E,, + E,), where E,, is the time average of the domain
averaged zonal mean flow, given in (5.5), and E,, is the time average of the domain

averaged kinetic energy of the eddies,

1 1
E — - 12 32 . .
R o E L (56)

Zmf is shown as a function of the energy input rate in Fig. 5.2a for NIF
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Figure 5.2: Bifurcation structure comparison for jet formation in S3T, QL, and NL. Shown
is the zmf index of jet equilibria for (a) NIF and (b) for IRFn forcing as a function of the forcing
amplitude €/e.,, for the NL simulation (dash-dot and circles), the QL simulation (dashed and
dots) and the corresponding S3Ta simulation (solid). The bifurcation diagram and the structure

of the jet agree in the QL and S3Ta simulation, but the bifurcation in the NL simulations occurs
at s&{i” ~ lle.,, for NIF and at at 58\}) ~ 4e.,, for IRFn. Agreement between NL and S3T

predictions is obtained if the S3T is forced with the spectrum that reflects the modification
of the equilibrium NIF or IRFn spectrum respectively by eddy—eddy interactions (the results
of this S3T simulation is indicated as S3Tb, see discussion at section 5.4). (For IRFn this
spectrum is shown in Fig. 5.5c.) This figure shows that the structural stability of jets in NL
simulations is captured by the S3T if account is taken of the nonlinear modification of the
spectrum. Parameters: 8 = 10, » = 0.01.

forcing and in Fig. 5.2b for IRFn forcing with » = 0.01. The fundamental
qualitative prediction of S3T that jets form as a bifurcation in the strength of
the turbulence forcing is verified in these plots. Agreement in the value of the
bifurcation parameter is also obtained between S3T and QL while the bifurcation
parameter is substantially larger in NL. For example, the NL simulations bifurcate
at ESEL) ~ 1lle., under NIF forcing and at EQEL) ~ 4e., under IRFn forcing.
Similar behavior was noted by Srinivasan and Young (2012). The reason for
this difference between the NL and S3T bifurcation curves is revelatory of the
underlying dynamics of the bifurcation, as we explain in section 5.4.

S3T dynamics not only predicts the emergence of zonal jets as a bifurcation
in turbulence forcing, but also predicts the structure of the finite amplitude jets
that result from equilibration of the initial jet formation instability. These finite
amplitude jets correspond to fixed points of the S3T dynamics. An example for
IRFn strongly forced with e = 100e., and with damping » = 0.01 is shown in
Fig. 5.3. This example demonstrates the essential similarity among the jets in
NL, QL and S3T simulations.

Under strong turbulence forcing the initial S3T jet formation instability typically
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Figure 5.3: Hovmoller diagrams of jet emergence in NL, QL and S3T simulations with IRFn
forcing at energy input rate € = 100e.,. Shown is U(y,t) for the NL (panel (a)), QL (panel
(b)) and S3T (panel (c)) simulations. Also shown are the equilibrium jets (panel (d)) in the NL
(dash-dot), QL (dashed), and S3T (solid) simulations. There is very good agreement between
the jet structure in the NL, QL and S3T simulations, despite the difference in the zmf index
among them (cf. Fig. 5.2b). Moreover, in all three simulations similar jet mergers are observed,
leading eventually to final equilibrium jets with smaller meridional wavenumber than that of the
initial instability. Parameters are § = 10, » = 0.01.

reaches final equilibrium as a finite amplitude jet at a wavenumber smaller than
that of the initial instability. An example is the case of IRFn at ¢ = 100¢e.,
shown in Fig. 5.3. In this example, the jets emerge in S3T initially with zonal
wavenumber n, = 10, in agreement with the prediction of the S3T instability of
the homogeneous equilibrium, but eventually equilibrate at wavenumber n, = 3
following a series of jet mergers, as seen in the Hovmoller diagram. Similar
dynamics are evident in the NL and QL simulations. This behavior can be
rationalized by noting that if the wavenumber of the jet remains fixed then as
jet amplitude continues to increase under strong turbulence forcing violation of
the Rayleigh-Kuo stability criterion would necessarily occur. By transitioning to

a lower wavenumber the flow is able to forestall this occurrence of inflectional

83



instability. However, detailed analysis of the S3T stability of the finite amplitude
equilibria near the point of jet merger reveals that these mergers coincide with the
inception of a structural instability associated with eddy—mean flow interaction,
which precedes the occurrence of hydrodynamic instability of the jet (Farrell and
Toannou, 2003, 2007).! The stability of finite amplitude S3T equilibria will be

discussed in chapter 6.

(a) S3Tz U(y,t)
B6F T ; T ; I T — 0.4
| { —
4n ————————————————————————
> [fo=== == 0
_____ E==2 —
oL e ——————— = =
-0.2
0 - -0.4
0 50 100 150 200 250 300 350
= () !
- 0.6
= -
S S Pk EE T
70.4* i Y A Jd-7 b
< v -— S~
g -=d RN
= 02 P e 4
< Ll i
13 ,
° 0 P L I
0 50 100 150 t 200
t =40 t =170
40
=
|

ﬁ - U,v y

Figure 5.4: (a) Hovmoller diagram showing details of the jet mergers for ¢ < 350 in the
S3T simulation in Fig. 5.3. In (b) is shown the amplitude of the jet maxima that appear in
(a). Note that only the prograde jets merge. The bottom panels show the mean potential
vorticity gradient 8 — Uyy as a function of y at the times indicated by vertical lines in (a) and
(b). These graphs show that the structure of the jets is configured at each instant to satisfy the
Rayleigh-Kuo stability criterion and that jet mergers are the mechanism in S3T for avoiding
inflectional instability. Decrease in the amplitude of the jets prior to merger indicates increased
downgradient vorticity fluxes as the flow approaches hydrodynamic neutrality.

1Jet mergers occur in the Ginzburg-Landau equations that govern the dynamics of the S3T
instability of the homogeneous equilibrium state for parameter values for which the system
is close to marginal stability (Parker and Krommes, 2014). However, these mergers in the
Ginzburg-Landau equations are associated with equilibration of the Eckhaus instability, rather
than equilibration of the inflectional instability associated with violation of the Rayleigh-Kuo
criterion as is the case for mergers of finite amplitude jets (cf. Fig. 5.4). Characteristic of this
difference is that in the case of the Ginzburg-Landau equations both the prograde and retrograde
jets merge, while in the case of the finite amplitude jets only the prograde jets merge. The same
phenomenology as in the Ginzburg-Landau equations occurs in the case of the Cahn-Hilliard
equations that govern the dynamics of marginally stable jets in the modulational instability
study of Manfroi and Young (1999).
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5.4 INFLUENCE OF THE TURBULENCE SPECTRUM ON THE S3T JET FORMATION
INSTABILITY

Both QL and S3T dynamics exclude interactions among eddies and include
only the non-local interactions between jets, with k, = 0, and eddies, with
ky # 0. Therefore, there is no enstrophy or energy cascade in wavenumber
space in either QL or S3T dynamics and the homogeneous S3T equilibrium state
(cf. (2.22)) has spectrum, eQy/(2r),which is determined by the spectrum of the
forcing (Qk is the spectral power of the forcing covariance, cf. Appendix A).
However, this is not true in NL which includes eddy—eddy interactions producing
enstrophy /energy cascades. For example, in NL an isotropic ring forcing is spread
as time progresses, becoming concentrated at lower wavenumbers and forming the
characteristic dumbbell shape seen in S-plane turbulence simulations (cf. Vallis
and Maltrud (1993)) and consequently the homogeneous turbulent state is no
longer characterized by the spectrum of the forcing. We can take account of this
modification of the spectrum by performing S3T stability on the homogeneous

state under the equivalent forcing covariance,
N r ~
NL _ 4T 2
== (G (5.7)

which maintains the observed NL spectrum, <]fk\2>, in the S3T dynamics. The
NL modified eddy vorticity spectrum, <|fk\2>, is obtained from an ensemble of
NL simulations. Plots of <|§’k]2>, under IRFn forcing are shown in Figs. 5.5a-c

for various energy input rates, ¢, and damping rates, r. The departure of the
NL spectra from the spectra of the QL and S3T equilibria is evident and this
departure depends on the amplitude of the forcing, e, and the damping, r.

We now demonstrate that while the fundamental qualitative prediction of
S3T that jets form as a bifurcation in turbulence forcing and in the absence
of turbulent cascades is verified in both QL and NL, a necessary condition for
obtaining quantitative agreement between NL and both S3T and QL dynamics
is that the equilibrium spectrum used in the S3T and QL dynamics be close
to the equilibrium spectrum obtained in NL so that the stability analysis is
performed on similar states. In the case with IRFn and r = 0.01, formation of
persistent finite amplitude zonal jets occurs in the NL simulations at ¢ = 2.8¢.,
(cf. Fig. 5.2b). In agreement, S3T stability analysis on the NL modified equilibrium
IRFn spectrum (denoted S3Tbh and shown in Fig. 5.5¢) predicts instability for
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Figure 5.5: Panels (a)-(d): Equilibrium enstrophy spectrum, log (<\§k|2>), of NL simulations,
in which eddy—eddy interactions are included and the k; = 0 component is excluded, for various
damping rates, r. The example is for IRFn forcing at ¢ = 2e.,. Shown are spectra for: (a) r =1,
(b) r = 0.1 and (¢) » = 0.01. The critical e., is a function of r and is obtained from S3T for each
value of r. All spectra have been normalized. The equilibrium spectrum of the S3T (identical
to QL) is shown in panel (d). This figure shows that for strong damping the spectrum in NL
simulations is close to the S3T spectrum while for weak damping the equilibrium spectrum in
NL differs substantially from that in S3T. In all cases 8 = 10. Panel (e): S3T growth rates, s,
as a function of the meridional wavenumber, n,, for the nonlinearly modified spectrum shown
in panel (¢) (r = 0.01). Shown are cases for € = 2¢.,, ¢ = 2.8¢.,, and ¢ = 10e.,,. It can be
seen that S3T stability analysis forced by this spectrum predicts that jets should emerge at
€ = 2.8¢,, with ny = 6. S3T predictions are verified in NL as shown in the bifurcation diagram
in Fig. 5.2b (denoted as S3Th).
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e > 2.8, (cf. Fig. 5.5e). Moreover, S3T stability analysis with the S3Tb
spectrum predicts jet formation at n, = 6 and in agreement with this prediction
jets emerge in NL with n, = 6. Hovmoller diagrams demonstrating similar jet
evolution in NL under IRFn forcing and in S3T under S3Tb forcing are shown in
Fig. 5.6. We also note that agreement between NL and S3T in predictions of jet
amplitude at large supercriticality is also obtained by using the S3Tb spectrum
(cf. Figs. 5.2a and 5.2b).?
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Figure 5.6: Hovmoller diagrams of U(y,t) comparing jet emergence and equilibration in an
NL simulation under IRFn forcing (panel (a)) with an S3T simulation under S3Tb forcing (panel
(b)). The corresponding time mean jets are shown in panel (¢). This figure shows that the
S3Tb modification of the forcing spectrum suffices to obtain agreement with NL. Parameters are
e = 10e.,,, f =10, r = 0.01.

This influence of the eddy spectrum on jet dynamics is revealed in the case of
IRFn at energy input rate € = 2¢.,, shown in Fig. 5.7. Although at this energy
input rate S3T under IRFn is structurally unstable, no jets emerge in NL. We have
shown that agreement in bifurcation structure is obtained between NL and S3T
when S3T analysis is performed with the S3Tb spectrum. We now examine the
development of the NL spectrum towards S3Tb and demonstrate the close control
exerted by this evolving spectrum on S3T stability. The evolving spectrum, shown
in Fig. 5.8a-f, is obtained using an ensemble of NL simulations, each starting from

a state of rest and evolving under a different forcing realization. A sequence of

2The spectral peaks near the k, axis do not directly influence the stability of the NL modified
spectrum, which is determined by the distorted and broadened ring spectrum. However, while
the spectral peaks do not influence the stability directly, they do influence it indirectly by
distorting the incoherent spectrum.
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S3T stability analyses performed on this evolving ensemble spectrum is show in
Fig. 5.8g. The weak NL ensemble spectrum at ¢t = 1 does not support instability,
but by ¢t = 20 the ensemble spectrum, having assumed the isotropic ring structure
of the forcing, becomes S3T unstable. This structural instability results in the
formation of an incipient n, = 6 jet structure which is evident by ¢ = 50 in
the NL simulation shown in Fig. 5.7. As the spectrum further evolves, the S3T
growth rates decrease and no jet structure is unstable for ¢t > 120, and decay rates
continue to increase until t = 250 (cf. Fig. 5.8g). This example demonstrates the
tight control on S3T stability exerted by the spectrum. Furthermore, it shows
the close association between S3T instability and the emergence of jet structure
in NL.

5.5 INFLUENCE OF NON-ZONAL STRUCTURES PREDICTED BY S3T ON THE
TURBULENCE SPECTRUM AND ON JET DYNAMICS

Despite S3T supercriticality, no persistent jets emerge in NL simulations with
IRFn forcing in the interval €., < e < 2.8¢., (cf. Fig. 5.2a). Comparisons of NL,
QL and S3T simulations with IRFn forcing at ¢ = 2¢., are shown in Fig. 5.7.
Instead of zonal jets, in the NL simulation prominent non-zonal structures are
seen to propagate westward at the Rossby wave phase speed. These non-zonal
structures are also evident in the concentration of power in the enstrophy spectrum
at (|kz|,|ky|) = (1,7) (cf. top panels of Fig. 5.9). At this forcing amplitude these
structures are essentially linear Rossby waves which, if stochastically forced,
would be coherent only over the dissipation time scale 1/r. Coherence on the
dissipation time scale is observed in the subdominant part of the spectrum as
seen in the case of the (3,6) structure in Fig. 5.10c. However, the dominant (1,7)
structure remains coherent over time periods far exceeding the dissipation time
scale (cf. Hovmoller diagram Fig. 5.10b). This case represents a regime in which
the flow is dominated by a single non-zonal structure. Both the concentration of
power in and the coherence of this structure will be addressed below.

When the forcing is increased to € = 10e.,, a (0,6) jet structure emerges,
suppresses the non-zonal (1, 7) structure, and becomes the dominant structure. A
prominent phase coherent non-zonal (1,5) structure propagating with the Rossby
wave speed is also present, as shown in Fig. 5.11. A similar regime of coexisting
jets and non-zonal structures is also evident at higher supercriticalities. An

example is the case of the equilibrium state at € = 100e., (cf. Fig. 5.3) in which
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Figure 5.7: Hovmoller diagrams of jet emergence in NL, QL and S3T simulations with IRFn
forcing at € = 2e.,,. Shown is U(y,t) for the NL (panel (a)), QL (panel (c)) and S3T (panel (e))
simulations and characteristic snapshots of streamfunction fields at ¢ = 2000 for the NL and
QL simulations (panels (b) and (d)). Notice that in the U(y,t) diagram for NL the color axis
is scaled differently. Also shown are the equilibrium jets in the NL (dash-dot), QL (dashed),
and S3T (solid) simulation (panel (f)). At e = 2e.,, in the NL simulation no jets emerge but
accumulation of energy in non-zonal structures with zonal wavenumber k; = 1 and meridional
wavenumber k, = 7 is discernible. Parameters are 8 = 10, r = 0.01.
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Figure 5.8: Panels (a)-(f): Evolution of the ensemble average enstrophy spectrum, <\fk|2>, for
NL with IRFn forcing at € = 2e.,. Panel (g): Growth rates, s,, as a function of jet meridional
wavenumber, n,, predicted by S3T stability analysis performed on the instantaneous spectrum
at the times indicated in panels (a)-(f). The evolving spectrum renders the NL simulation S3T
unstable at t &~ 20 and stabilizes it again at ¢ ~ 120. Parameters are 8 = 10, » = 0.01.

the energy of the flow is shared between the (0, 3) jet and the (1,3) structure, as
shown in Fig. 5.11. At this forcing level the (1, 3) structure is not phase coherent,
but its phase speed is still given by the Rossby wave speed. At even higher
forcing similar non-zonal structures, referred to as zonons, have been reported to
coexist with zonal jets while propagating phase incoherently at speeds that differ
substantially from the Rossby wave speed (Sukoriansky et al., 2008). These cases
provide examples of the regime in which jets and non-zonal structures coexist.

In order to study the dynamics of non-zonal structures within the framework of
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Figure 5.9: The statistical equilibrium enstrophy spectrum, log (<\§k|2>), for NL and QL
simulations under IRFn forcing at € = 2¢., (panels (a) and (b)) and € = 10e., (panels (c)
and (d)). For e = 2¢.,, the NL simulations do not support zonal jets and energy is seen to
accumulate in the non-zonal structure (|kz|, |ky|) = (1,7). At € = 10e.,,, persistent zonal jets
emerge (cf. Fig. 5.6) suppressing the power in the non-zonal structures. Parameters: g = 10,
r = 0.01.

S3T the interpretation of the ensemble mean in the S3T formulation is required:
instead of interpreting the ensemble means as zonal means, interpret them rather
as Reynolds averages over an intermediate time scale, cf. (2.13). As we have
seen in chapter 3, the S3T stability of the homogeneous equilibrium state using
this interpretation reveals that when the energy input rate reaches the value ¢,
which is the S3T stability threshold for the emergence of zonal jets, the state may
already be unstable to non-zonal structures (cf. Fig. 3.2c,e). This can be also
seen in the stability analysis shown in Fig. 5.12. In agreement with this stability
analysis, the spectrum of the NL simulation shows concentration of power in these
most S3T unstable wavenumbers (cf. Fig. 5.9).

The dominance and persistence of the structures seen in these NL simulations
can be understood from this stability analysis and its extension into the nonlinear
regime. Because the stochastic forcing is white in time, the energy injection rate is
fixed and state independent and, assuming linear damping at rate r dominates the
dissipation, the total flow energy assumes the fixed and state independent mean
value E,, + E, = ¢/(2r). At finite amplitude the set of S3T unstable structures
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Figure 5.10: Hovmoller diagrams of the non-zonal structures supported in the NL simulation
of Fig. 5.7. Panel (a): evolution of the total perturbation streamfunction, ¥(z,y = yo,t),
at latitude yo = m/4. Panel (b): evolution of the dominant (|kz|, |ky|) = (1,7) structure of
Y(x,y = yo,t) at latitude yo = w/4. Almost half of the energy input to the system is captured
and dissipated by this mode, which is phase coherent and propagates at the Rossby wave speed
indicated by the dashed line. Panel (c): evolution of the (|ks|, |ky|) = (3,6) structure at the
same latitude. While this structure propagates at the Rossby wave speed it is not phase coherent.
Parameters: IRFn forcing at € = 2¢.,, f = 10, r = 0.01.
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Figure 5.11: Panel (a): Evolution of the mean flow energy, E,,, which is concentrated at
(0,6), the total eddy energy, E,, and the energy of the (1,5), (1,6) and (1,7) structures for the
NL simulation with IRFn forcing at € = 10e. 5, shown in Fig. 5.6. Panel (b): Evolution of the
mean flow energy, F,,, the total eddy energy, E,, as well as the energy of the (1,3), (1,5) and
(1,6) structures for the NL simulation with IRFn forcing at € = 100e,,,, shown in Fig. 5.3. The
mean flow energy is concentrated at (0,3). In both panels the evolution of the energies is shown
after statistical steady state has been reached.

Figure 5.12: Growth rate, s,, of the S3T non-zonal eigenfunction, e™*, as a function of
zonal wavenumber n, and meridional wavenumber, n, for IRFn at ¢ = 0.75¢.,, (panel (a)) and
€ = 2ec,, (panel (b)). The values at the axis, (0,n,), give the growth rate of the corresponding
jet perturbation. For ¢ = 0.75¢., the n, = 0 jet eigenfunctions are stable but the non-zonal
perturbations are unstable with maximum instability occurring at n = (2,8). For ¢ = 2¢., the
ng = 0 perturbations are unstable but the non-zonal perturbations are more strongly unstable,
with maximum growth at n = (2,8) and n = (1,7). An NL simulation at € = 2¢., accumulates
energy at (|kz|,|ky|) = (1,7) (cf. Fig. 5.9) while the vorticity field shows some accumulation at
(lkzl, |kyl) = (2,8) (cf. Fig. 5.8f). The stability boundary (s, = 0) is marked with thick solid line.
For both panels 8 = 10 and r = 0.01.
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equilibrate to allocate among themselves most of this energy which results in
the dominance of a small subset of these structures. However, we find that in
this competition a specific zonal jet structure has primacy so that even if this

structure is not the most linearly unstable it emerges as the dominant structure.

An attractive means for exploring the dynamics of the interaction between
jets and non-zonal structures is changing the jet damping rate in the mean
flow equation (5.1a) from r to ry and allowing it to assume values different
from the perturbation damping rate, r, in (5.1b). (The same change of r to
Tm is also done in the QL system (5.3) and the S3T system (5.4).) In this way
we can control the relative stability of jets and non-zonal structures as well as
the finite equilibrium amplitude reached by the jet. This asymmetric damping
may be regarded as a model for approximating jet dynamics in a baroclinic
flow in which the upper level jet is lightly damped, while the active baroclinic
turbulence generating scales are strongly Ekman damped. This asymmetry in the
damping between upper and lower levels contributes to making jets in baroclinic
turbulence generally stronger than jets in barotropic turbulence (Farrell and
loannou, 2007, 2008). By appropriate choice of r and ry, a regime can be obtained
in which the zonal jet instability appears first as € increases. Because once jets
are unstable they dominate non-zonal structures, in this regime zonal jets are the
dominant coherent structure and S3T analysis based on the zonal interpretation
of the ensemble mean produces very good agreement with NL. For example, a
comparison of bifurcation structures among S3T, QL and NL under NIF and
IRFn forcing using the asymmetric damping » = 0.1 and r,, = 0.01 demonstrates
that jets emerge at the same critical value in S3T, QL and NL (cf. Figs. 5.13a and
5.13b). This agreement, which has been obtained by suppression of the non-zonal
instability up to €., implies that in the simulations with symmetric damping the
disagreement in the S3T prediction for the first emergence of jets (cf. Fig. 5.2) can
be attributed to modification of the background spectrum by the prior emergence
of the non-zonal structures. Moreover, zonal structures once unstable immediately
dominate non-zonal structures assuring that S3T dynamics based on the zonal
mean interpretation of the ensemble mean produces accurate results.

A comparison of the development of jets in S3T, QL, and NL with this asym-
metric damping and NIF forcing, shown in Figs. 5.14 and 5.15, demonstrates
the accuracy of the S3T predictions. S3T stability analysis predicts that in

this case with NIF forcing maximum instability occurs at n, = 6. When these
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maximally growing eigenfunctions are introduced in the S3T system the jets grow
exponentially at first at the predicted rate and then equilibrate. Corresponding
simulations with the QL and NL dynamics reveal nearly identical jet growth
followed by finite amplitude equilibration (shown in both Figs. 5.14 and 5.15).
Similar results are obtained with IRFn forcing. This demonstrates that the S3T
dynamics comprises both the jet instability mechanism and the mechanism of
finite amplitude equilibration.

Although no theoretical prediction of this bifurcation behavior can be made
directly from NL or QL, they both reveal the bifurcation structure obtained from
the S3T analysis. By suppressing the peripheral complexity of non-zonal structure
formation by non-zonal S3T instabilities, these simulations allow construction
of a simple model example that provides compelling evidence for identifying jet
formation and equilibration in NL with the S3T theoretical framework. Moreover,
agreement among the NL, QL and S3T bifurcation diagrams shown in Figs. 5.13a
and 5.13b provides convincing evidence that turbulent cascades, which are not
present in S3T or QL, are not required for jet formation.

While under NIF agreement between NL and S3T equilibrium jet amplitudes
extends to all values of ¢, under IRFn the NL and S3T equilibrium amplitudes
diverge at larger values of € (cf. Figs. 5.13a and 5.13b). This difference among
NL, QL and S3T at large £ cannot be attributed to nonlinear modification of the
spectrum, which is accounted for by use of the S3Th spectrum (cf. S3Th response
in Fig. 5.13b). Rather, this difference is primarily due to nonlinear eddy—eddy
interactions retained in NL that disrupt the up-gradient momentum transfer. This
disruption is accentuated by the peculiar efficiency with which the narrow ring
forcing, IRFn, gives rise to vortices, as can seen in Fig. 5.1d-f. The more physical
distributed forcing structures do not share this property (cf. Fig. 5.1). We verify
that the narrow ring IRFn forcing is responsible for depressing NL equilibrium jet
strength at high supercriticality by broadening the forcing distribution to assume
the form IRFw (cf. Appendix H as well as Fig. 5.1 for IRFn-IRFw comparison).
Using IRFw while retaining other parameters as in Fig. 5.13b, we obtain agreement

between S3T, QL and NL simulations, as is shown in Fig. 5.13c.
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5.6 IDENTIFICATION OF INTERMITTENT JETS WITH STABLE S3T ZONAL EIGEN-
FUNCTIONS

For subcritical forcing S3T predicts a stable homogeneous statistical equilibrium
and a set of eigenfunctions that govern the decay of perturbations to this equilib-
rium. We wish to show that these eigenfunctions are excited in NL by fluctuations
in the turbulence and that this excitation gives rise in NL simulations to the
formation of intermittent jets with the form of these eigenfunctions.

As an example, consider the simulation with asymmetric damping and IRFn
subcritical forcing shown in Fig. 5.16. For these parameters the least damped
eigenfunctions are zonal jets and confirmation that the intermittent jets in NL,
shown in the top panel of Fig. 5.16, are consistent with turbulence fluctuations
exciting the S3T damped modes is given in the bottom panel of Fig. 5.16 where the
intermittent jets resulting from stochastic forcing of the S3T modes themselves are
shown. This diagram was obtained by plotting U(y,t) = Re [Zgy —1 O, (t)ei”yy},
with oy, independent red noise processes, associated with the damping rates,
|s(n)|, of the first N = 15 least damped S3T modes. These a,, are obtained
from the Langevin equation, dev,, /dt = s(ny) o, + £(t), with £(t) a d-correlated
complex valued random variable.

The fluctuation-free S3T simulations reveal persistent jet structure only coinci-
dent with the inception of the S3T instability, which occurs only for supercritical
forcing. However, in QL and NL simulations fluctuations excite the damped
manifold of modes predicted by the S3T analysis to exist at subcritical forcing
amplitudes. This observation confirms the reality of the manifold of S3T stable
modes.

In NL and QL simulations these stable modes predicted by S3T are increasingly
excited as the critical bifurcation point in parameter space is approached, because
their damping rate vanishes at the bifurcation. The associated increase in zonal
mean flow energy on approach to the bifurcation point obscures the exact location
of the bifurcation point in NL and QL simulations compared to the fluctuation-free
S3T simulations for which the bifurcation is exactly coincident with the inception
of the S3T instability (i.e. Fig. 5.13a, 5.13b and 5.13c).
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5.7 VERIFICATION IN NL OF THE MULTIPLE JET EQUILIBRIA PREDICTED BY
S3T

As is commonly found in nonlinear systems, the finite amplitude equilibria
predicted by S3T are not necessarily unique and multiple equilibria can occur for
the same parameters. S3T provides a theoretical framework for studying these
multiple equilibria, their stability and bifurcation structure. An example of two
such S3T equilibria are shown in Fig. 5.17 together with their associated NL
simulations. As the parameters change these equilibria may cease to exist or
become S3T unstable. Similar multiple equilibria have been found in S3T studies
of barotropic S-plane turbulence (Farrell and Ioannou, 2003, 2007; Parker and
Krommes, 2014) and in S3T studies of baroclinic turbulence (Farrell and Ioannou,
2008, 2009¢) and the hypothesis has been advanced that the existence of such
multiple jet equilibria may underlie the abrupt transitions found in the record of
Earth’s climate (Farrell and Ioannou, 2003; Wunsch, 2003).

5.8 CONCLUSIONS

In this chapter predictions of S3T for jet formation and equilibration in barotropic
B-plane turbulence were critically compared with results obtained using QL and
NL simulations. Throughout this chapter the zonal mean—eddy decomposition
(section 2.2) was used for all three NL, QL and S3T systems. The qualitative bifur-
cation structure predicted by S3T for emergence of zonal jets from a homogeneous
turbulent state was confirmed by both the QL and NL simulations. Moreover,
the finite amplitude equilibrium jets in NL and QL simulations were found to
be as predicted by the fixed point solutions of S3T. Differences in jet formation
bifurcation parameter values between NL and QL/S3T were reconciled by taking
account of the fact that the spectrum of turbulence is substantially modified in
NL. Remarkably, the modification of the spectrum in NL could be traced in large
part to emergence of non-zonal structures through S3T instability. When account
is taken of the modification of the turbulent spectrum resulting substantially from
these non-zonal structures, S3T also provides quantitative agreement with the
threshold values for the emergence of jets in NL. The influence of the background
eddy spectrum on the S3T dynamics was found to be immediate, in the sense that
in spin-up simulations jets emerge in accordance with the instability calculated

on the temporally developing spectrum. The fact that jets are prominent in
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observations is consistent with the robust result that when a jet structure emerges
it has primacy over the non-zonal structures, so that even if the jet eigenfunction
is not the most linearly S3T unstable eigenfunction, the jet still emerges at finite
amplitude as the dominant structure.

These results confirm that jet emergence and equilibration in barotropic S-plane
turbulence results from the cooperative quasi-linear mean flow—eddy instability
that is predicted by S3T. These results also establish that turbulent cascades
are not required for the formation of zonal jets in S-plane turbulence. Moreover,
the physical reality of the manifold of stable modes arising from cooperative
interaction between incoherent turbulence and coherent jets, which is predicted
by S3T, was verified in this work by relating observations of intermittent jets in
NL and QL to stochastic excitation by the turbulence of this manifold of stable
S3T modes.

5.9 BIBLIOGRAPHICAL NOTE

This chapter is an adaptation from the paper by Constantinou et al. (2014a). The
NIF forcing used in this chapter was first used by Williams (1978) in order to to
parametrize excitation of barotropic dynamics by baroclinic instabilities. It was
also used by DelSole (2001) in his study of upper-level tropospheric jet dynamics
and in the study of jet formation using S3T dynamics by Farrell and Ioannou
(2003, 2007) and Bakas and Ioannou (2011). The isotropic narrow ring forcing,
IRFn, has been used extensively in studies of S-plane turbulence (cf. Vallis and
Maltrud, 1993) and was also used in the recent study of Srinivasan and Young
(2012). It was introduced by Lilly (1969), in order to isolate the inverse cascade

from the forcing in a study of two dimensional turbulence.
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Figure 5.13: Bifurcation structure comparison for jet formation in S3T, QL, and NL with
asymmetric damping. Shown is the zmf index of jet equilibria for NIF (panel (a)), IRFn
(panel (b)) and IRFw (panel (c)) as a function of the forcing amplitude ¢/e., for the NL
simulation (dash-dot and circles), the QL simulation (dashed and dots) and the corresponding
S3Ta simulation (solid and diamonds). Also shown in panel (b) is the zmf that is obtained from
S3T simulations forced with the nonlinearly modified S3Tbh spectrum (calculated from ensemble
NL simulations at € = 20e.,). Parameters are g = 10, » = 0.1, rm = 0.01.
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Figure 5.14: Hovmoller diagrams of jet emergence in the NL, QL and S3T simulations for
NIF at € = 1.5¢.,, with asymmetric damping. Shown is U(y, t) for the NL (panel (a)), QL (panel
(c)) and S3T (panel (e)) simulations and also characteristic snapshot of the vorticity fields at
t = 2000 for NL and QL simulations (panels (b) and (d)). Also shown are the equilibrium jets in
the NL (dash-dot), QL (dashed), and S3T (solid) simulation (panel (f)). This figure shows that
S3T predicts the structure, growth and equilibration of weakly forced jets in both the QL and
NL simulations. Parameters are: 8 = 10, r = 0.1, r, = 0.01.
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Figure 5.15: Same as Fig. 5.14 but with forcing at € = 20e.,. While initially jets emerge
having the structure of the most unstable S3T mean flow eigenfunction with n, = 6, at later
times, following a series of mergers they equilibrate to a finite amplitude state with n, = 4.
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Figure 5.16: Hovmoller diagrams of intermittent jet structure in NL and QL simulations
at subcritical forcing ¢ = 0.8¢c,,. Shown are U(y,t) for NL (panel (a)) and QL (panel (b))
simulations and the U(y, t) that results from random excitation of the S3T damped modes (panel
(¢)). These plots were obtained using IRFn forcing with » = 0.1, 7 = 0.01. This figure shows
that the manifold of S3T damped modes are revealed by being excited in the fluctuating NL
and QL simulations. Planetary vorticity gradient: 8 = 10.
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Figure 5.17: Realizations in NL simulations of multiple equilibria predicted by S3T. Show
are Hovmoller diagrams of NL simulations showing the equilibrium with 4 jets (panel (a)) and
with 5 jets (panel (c)). Also shown is comparison of the S3T equilibrium jets (solid) with the
average jets obtained from the NL simulation (dashed) for the two equilibria (panels (b) and
(d)). Parameters: NIF forcing at € = 10e.,, r = 0.1, r,, = 0.01 and 8 = 10.
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S3T stability of inhomogeneous turbulent

equilibria

We have already seen that with homogeneous forcing the S3T system has homoge-
neous equilibria for any level of forcing, but also inhomogeneous equilibria in the
form of zonal jets, as those obtained in chapter 5, or non-zonal inhomogeneous
equilibria in a moving frame of reference, as the traveling wave solutions that
were obtained in chapter 4 (cf. Fig. 4.7). In chapter 3 we presented systematic
methods that enabled us to determine the stability of the homogeneous state and
we were able to predict the critical parameters for which the symmetry of the
homogeneous state is broken. The stability of finite amplitude zonal jet equilib-
ria to zonal jet perturbations has been already studied by Farrell and Ioannou
(2003) and more recently by Parker and Krommes (2014). Here we present more
general methods for determining the stability of inhomogeneous states to zonal
but also non-zonal perturbations. With this more general stability analysis we
demonstrate that the phenomenon of jet merging is properly understood as an
S3T instability and consequently this phenomenon is properly understood in the
framework of statistical state dynamics. We also show that the transition from

zonal to non-zonal turbulent states is also predicted by S3T stability analysis.
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6.1 STABILITY OF FINITE AMPLITUDE ZONAL JET S3T EQUILIBRIA TO ZONAL
JET MEAN FLOW PERTURBATIONS

Consider first the equilibrium states that arise in the simpler S3Tz system (2.21),
i.e., the S3T system in which ensemble means are interpreted as zonal means. In
S3Tz by construction the mean flows are zonal jets and the associated equilibria,
when they exist, can only be zonal jets. The zonal jet equilibria arise as a
bifurcation of the homogeneous equilibrium state that becomes S3T unstable for
energy injection rates, ¢, that exceed a critical value, €., (see Figs. 5.2 and 5.13).
The resulting zonal jet equilibria have the characteristic property that the number

1. examples are shown in

of jets decreases as the supercriticality, /e, ,, increases
Figs. 5.3, 5.6, 5.14 and 5.15. We wish to study the stability of these jet equilibria in
order to understand the mechanism underlying the transition from one equilibrium
state to another. In order to proceed with the stability analysis of the equilibria,
we must first determine the equilibrium solutions, (U¢(y), C(xq — Zb, Ya, Ys)),
with adequate accuracy in order to obtain good estimates of their stability. While
stable equilibrium solutions can be in principle obtained with the required accuracy
with forward time-integration of the S3T system, forward time-integration cannot
determine unstable equilibria and consequently we must resort to continuation
methods in order to obtain all the fixed points of the S3T equations. Both stable
and unstable equilibrium states can be determined with great accuracy and ease
using the continuation methods described in Appendix I.

As discussed in chapter 2, the linear stability of S3T equilibria is studied
through eigenanalysis of the operator governing the linearized S3T evolution of
the perturbations (67, 0C') about the equilibrium state:

8,07 = A°5Z + R(5C) (6.1a)
O 6Ca = (AG+ A5) 6Cuw, + (0 Aa +0.4) Cgy (6.1b)

with A® = A(U°) and 0A = A(U°® + 0U) — A°. Note that discretized with N
points the dimension of the perturbation state in (6.1) is O(N*). For example,
if we use a modest discretization grid of N, = N, = 25, the dimension of the
equivalent matrix operator governing the stability of (6.1) is 224 x 224 ~ 107 x 107.

Despite the enormity of the size of the operators the real part, s, of the maximally

e, , is the minimum energy input rate for the instability of the homogeneous state to zonal
jets.
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growing eigenvalue, s, and the corresponding spatial structure of the eigenfunction,
(6Z,6C), can be still obtained numerically using the power method. The imaginary

part of the eigenvalue, s;, can then be determined by solving (6.1a):
(s, +is; + A% 6Z = R(5C) , (6.2)

for s;. This procedure is still computationally expensive because it requires
time-integration of a state vector of dimension NN, + NgNg. The dimension
of the system can be reduced by a square root when the equilibrium states are
zonal, as Bloch’s theorem (cf. Appendix D) requires that the spatial structure of

the eigenfunction can be assumed to be of the form:

6Z(x) = ™52, (y) , (6.3a)
(Sé(Xm Xb) = einw(wa+xb)/2 5C~Ynz (:Ea — Tb, Ya, yb) ’ (63b)

and the stability of the equilibrium is determined by evolving each zonal wavenum-
ber n, separately. More details regarding the method for determining the stability
of (6.1) are discussed in Appendix J. While for the case of the homogeneous
equilibria the eigenfunctions are single harmonics, i.e., §Z,, (y) = ™Y (cf. (E.4)),
for zonal jet S3T equilibria the eigenfunctions are single harmonic only in x and
have full spectrum in y (cf. Fig. 6.7 and also Fig. 6.12). However, Bloch’s theorem
(cf. Appendix D) restricts the meridional structure of the eigenfunction 6.3. For

example, the mean flow perturbation must be of the form

6 Zn, (y) = €9¥g(y) , (6.4)

with g(y) any function that has the same periodicity as the equilibrium jet, U¢(y),
and similarly for the perturbation covariance eigenfunction, 6C,, (cf. (D.7)). For
a ny-jet equilibrium function g is of the form: g(y) =>_,, ™Y Wavenumber qy
is called “Bloch wavenumber” and takes all values ¢, < n,/2 (for our channel of
length L, = L, = 27 wavenumber g, takes all integer values ¢, < n,/2). Therefore
a gy = 0 Bloch eigenfunction will have power at wavenumbers 0, £n,, +2n,, ...,
while a ¢, = 1 Bloch eigenfunction will have power at wavenumbers +1, +(n, +
1),£(2n, £1),....

Using the continuation methods described in Appendix I we find a series of
zonal jet equilibria that are characterized by different number of prograde jets,

ny. Consider for example the case with n, = 6 jets and for the parameters:
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NIF forcing, f = 10, r = 0.1 and r, = 0.01 (cf. chapter 5, case presented in
Fig. 5.13a). For these parameter values the homogeneous equilibrium becomes
first unstable to zonal jets with n, = 6 at ¢ = €., and inhomogeneous zonal
jet equilibria exist for all energy input rates € > €., that do not exceed 686¢.
The nonexistence of zonal equilibria with n, = 6 for e > 686¢., is attributed
to the inability to find equilibria when the flow starts supporting stable modal
structures that produce strong vorticity fluxes in the neighborhood of their critical
layers. Recall (cf. Appendix B) that although all the S3T equilibria are necessarily
hydrodynamically stable they may be S3T unstable. Specifically, the n, = 6
equilibria become S3T unstable for ¢ > 20e.,, that is for energy input rates
substantially lower than the energy input rate at which the equilibria cease to
exist. Some stable and unstable S3T equilibria, their associated planetary vorticity
gradient, 5 —Uy,,
rate are shown in Fig. 6.1. Note that because of the presence of dissipation, the

as well as the amplitude of the jets as a function of energy input

flow can remain stable although the mean planetary vorticity gradient changes
sign and becomes slightly negative in limited regions when the jet is retrograde
(cf. Fig. 6.1c). Note also that as the energy input rate is increased the amplitude
of the mean flow grows very gradually after €/e., ~ 100 (cf. Fig. 6.1d) and the
energy input of the stochastic forcing is absorbed mainly by the perturbation field,
which indicates that the extra energy in the perturbation field is not communicated
to the mean flow. This happens because for large enough energy input rates (for
€ > 20e., for ny, = 6) a nearly neutral modal structure is supported by the flow,
with critical layers where 8 — Uy, vanishes, and this mode absorbs most of the
incoming energy without producing appreciable upgradient vorticity fluxes to
support a stronger flow. This modal structure eventually develops strong critical
layers and strongly localized vorticity fluxes that make the existence of an S3T
equilibrium impossible.

A comprehensive mapping of S3T zonal jet equilibria together with their S3T
stability as a function of the supercriticality, €/e.,, and the number of jets, n,, is
shown in the balloon diagram Fig. 6.2. Jet equilibria exist in the yellow region of
the diagram. For values of €/e., and n, below the lower bounding curve (dashed)
the only S3T equilibrium is the homogeneous state with no mean flow and the
dashed line is the curve of neutral S3T stability of the homogeneous state. For
values of € and n, above the upper bounding curve no jet equilibria exist. The
S3T stability of certain jet equilibria to zonal jet perturbations (i.e. with n, =0

in (6.3)) is indicated with a closed circle when it is stable and with an open circle
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equilibrium jets as a function of £/e.,. The amplitude of the jets does not increase substantially
for /ec,, > 100 and the extra energy that is imparted in the flow is absorbed by the perturbation
field without being communicated to the mean flow. Parameters: NIF forcing, 8 = 10, » = 0.1

S3T equilibria with n, = 6 jets cease to exist at /e., = 686.

and 7, = 0.01.
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Figure 6.2: S3T zonal flow equilibria as a function of the number of prograde jets, n,,
and the forcing amplitude €/e.,. Jet equilibria exist in the yellow shaded region. The lower
bounding curve is the curve of neutral stability of the homogeneous state (the homogeneous
state is S3T stable for all € for n, > 12). For ¢ and ny above the upper bounding dashed-dot
curve jet equilibria do not exist. S3T stable finite amplitude jet equilibria to jet perturbations
are indicated with a full circle, S3T unstable equilibria to jet perturbations are indicated with an
open circle. For a range of ¢ there exist multiple S3T stable equilibria characterized by a different
number of jets. Near the curve of marginal stability only the jet equilibrium that corresponds to
the maximal instability of the homogeneous state, n, = 6 is stable, while the neighboring jet
equilibria are Eckhaus unstable. Parameters: NIF forcing, § = 10, r = 0.1 and r, = 0.01.

The balloon diagram shows that for a range of values of € multiple stable
equilibria exist (these correspond to multiple climate states in this barotropic
model). As ¢ is increased all ny-jet equilibria become eventually S3T unstable.
When they become unstable the turbulent flow reorganizes, the mean flow merges
and transitions to an available S3T jet stable equilibrium with fewer jets. For
example, at €/e., = 10 the equilibria with n, = 3,4,5,6 jets are all stable
(in chapter 5 we have seen that this is also reflected in the NL simulations;
cf. Fig. 5.17). If we increase the supercriticality to a value /e, > 10 the n, =6
jet becomes S3T unstable and the turbulent flow reorganizes to a state with
ny = 3,4,5 or even ny = 2 jets. This implies that if the energy input rate were

to increase in a 6-jet equilibrium the turbulent state would transition to a state
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with a fewer number of jets through a process of jet mergers.

We now give an example which demonstrates in an actual S3T simulation
that jet mergers do not occur because of the hydrodynamic instability of the
jets but rather due to their S3T instability. In the simulation shown in Fig. 6.3,
for €/e., = 100. The flow evolves towards jet configurations with fewer and
stronger jets though a sequence of jet mergers. Interestingly, the jet states of
the flow when they do not merge evolve slowly staying close to corresponding
S3T unstable equilibria till finally they get attracted to the first available S3T
stable equilibrium (for the chosen parameters the first S3T stable equilibrium
to jet perturbations (n, = 0) has n, = 3, all equilibria with n, > 3 are S3T
unstable to n, = 0 perturbations; cf. Fig. 6.2). Because the evolution of the jets
when they do not merge is slow we can interpret the jet merging process as an
instability of the time evolving state of the system and because the strength of
the hydrodynamic instability of a barotropic flow depends on the strength of
the violation of the Rayleigh-Kuo criterion 8 — Uy, it is natural to attribute jet
merging to the hydrodynamic instability of the flow. We see also, that during
this evolution the flow stays close to the various S3T equilibria before moving
to the next equilibrium. The maximum growth rate of A(U) that governs the
hydrodynamic stability of the flow is negative at each time indicating that jet
merging can not be attributed to the hydrodynamic stability of the flow. Thus
we conclude that the flow reorganization from a state with 4 jets to the state
with 3 jets does not occur due to hydrodynamic instability of the zonal flow but
is an inherent S3T phenomenon. In the specific example because the flow stays
close to the various S3T unstable equilibria jet merging can be attributed to the
S3T instability of these unstable equilibria that behave as unstable saddles of the
evolving flow.

As we increase the energy input rate, €, the stable S3T equilibria have fewer
jets and the structure of the equilibrium zonal flow equilibria, U€¢, acquires a
particular shape; see Fig. 6.4. While just above the stability boundary the jets
are to a good approximation sinusoidal, U® ~ sin(nyy) (cf. Fig. 6.4a), at higher
€ the retrograde parts of the jets become parabolic while the prograde parts of
the jets become increasingly pointed. This particular structure closely resembles
the shape of the observed jets in planetary atmospheres (see the 24°N jet on
Jupiter, shown in Fig. 1.4c as well as the parabolic equatorial jets in Uranus and
Neptune, shown in Figs. 1.14a,b). That the retrograde parts of the jets are nearly

parabolic is in agreement with potential vorticity (PV) mixing or homogenization
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Figure 6.3: (a) Hovmoller diagram of the zonal mean flow U(y,t) showing a series of jet
mergers leading finally to a state with 3 jets. Solid line marks the zero contour. The S3T
simulation starts from the homogeneous equilibrium state perturbed by a random mean flow
perturbation. (b) The corresponding evolution of the mean flow energy, E,,, and perturbation
energy, E,. Marked also are the energies of the homogeneous equilibrium and of the jet equilibria
with n, = 2,3,4. The flow for long periods is close to S3T unstable equilibria, till it finally
settles to the first available stable S3T equilibrium. For these parameters (cf. Fig. 6.2) the
ny = 1,2 jet equilibria are also stable, but both have larger/smaller mean flow/perturbation
energy. (c): The evolution of the maximum growth rate of A(U) for the instantaneous U (y, t).
The flow is at every time instant hydrodynamically stable. Parameters are as in Fig. 6.2 with
forcing at € = 100e.,,.
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arguments (Baldwin et al., 2007; Dritschel and Mclntyre, 2008; Dritschel and
Scott, 2011; Scott and Dritschel, 2012). According to these mixing arguments
the primary process in barotropic turbulence is the irreversible mixing by the
strongly nonlinear processes that leads to homogenized regions of the mean PV,
q = By — Uy, that manifest as a staircase in a diagram of the PV as function
of latitude (see also the discussion in section 1.2.1 and Fig. 1.13). In Fig. 6.6
we plot the PV structure for the S3T equilibrium jets shown in Fig. 6.4. It is
evident that S3T dynamics do produce a staircase structure when the forcing is
strong. This shows that PV staircases are produced by S3T dynamics despite
the absence of all eddy—eddy interactions. Note that the staircase structure
obtained here is similar to the staircases obtained in the fully nonlinear and
nearly inviscid simulations of Scott and Dritschel (2012) as well as those that are
observed in experiments (cf. Fig. 6.6). These S3T equilibria with PV staircase
structure provide a counterexample to the necessity of wave breaking and strong
nonlinearity for the formation of the staircase structure in barotropic turbulence
argued by Mclntyre and collaborators.

The primary mechanism responsible for the specific shape of the S3T equilibrium
flows at strong forcing is that turbulence acts on the mean flow as negative diffusion
(cf. section 3.4) and that the flow must be hydrodynamically stable, which means
that the necessary Rayleigh-Kuo criterion for stability cannot be violated (in the
limit of infinitesimal friction, i.e., e* = z-:k]% /r3 — 00). The latter requirement
constrains only the retrograde regions of the flow (where Uy, > 0) and brings
B — Uyy to the minimum value that does not violate Rayleigh-Kuo, i.e, brings
B—Uyy to zero, making in this way the flow parabolic, while the former requirement
leads to the formation of nearly linear prograde flows joined with sharp wedge-like
peaks. As the prograde jets become sharper, the zonal mean flow energy spectrum
develops a k, % slope (cf. Fig. 6.4), as is expected from the near discontinuity of
the derivative of the prograde jets (a discontinuity would predict a ky 4 zonal
energy spectrum; see also discussion in section 1.2.1). The absence of eddy—eddy
interactions in the S3T dynamics leads us to conclude that the observed zonal
energy spectrum cannot be attributed to the anisotropic and incoherent inverse
turbulent energy cascade, as it was recently proposed by Galperin et al. (2004).

For very high supercriticalities only finite amplitude states with jets having the
largest allowed scale, n, = 1, exist (this occurs in the balloon diagram Fig. 6.2 for
€/ec, > 800). Higher supercriticalities cannot sustain S3T fixed points because

the periodic box does not allow jets larger than the box size and the S3T dynamics
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Figure 6.4: Panels (a,d,g,j): The structure of the S3T stable equilibrium zonal mean flow,
U®, for excitation amplitudes ¢/e., = 2, 8,150,800, 10*. Panels (b,e,h,k): The corresponding
mean vorticity gradient, 3 — U, . Dash-dotted line marks the planetary vorticity gradient in the
absence of mean flow, 8 = 10. Panels (c,f,i,1): The energy spectrum of the equilibrium zonal
mean flow together with the k, % slope. For the highly supercritical jets the energy spectrum
has approximately an k, 5 dependence. It is argued that in the inviscid limit this slope should
approach k, 4 as the prograde jet becomes increasingly sharp. Other parameters as in Fig. 6.2.
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Figure 6.5: The zonal mean PV, g°(y) = Sy — Uy, that corresponds to the equilibrium zonal
flows shown in Fig. 6.4. Dashed lines correspond to the planetary PV, By.
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Figure 6.6: (a) The zonal mean flow and (b) the corresponding PV from the Grenoble
rotating tank experiment. The PV staircases structure closely resembles the one in Fig. 6.5.
(Taken from Read et al. (2007). The axes were flipped so that the orientation matches Fig. 6.5.)

(a) n,=5,¢/ec,=1.05 o (B)n=0,s=1427x10"" (c)

1 =
1 Ep) B
0.5 - 06 " )
4’, o 4 o 1
> ' 0 > Il o4l N g
S Y
2 2 = '
r ) i -05 < 021 I’ \ -
) ! ‘\
- — 1
L L L 1 ——— O-O-6-0O-06—L & - O--0--06
0 0 0000600600000
0 2 4 6 0 2 4 6 012324258678 910111213
T T ny
— — —4
(d) ny=7.¢/ec=11 0o (€) n,=0,s=145x10 (f)
6 = I I ) [ ~ 05 o "
= = n
= §50'47 " T
= 05 - N
4 = 4 S oal A i
Y [
> = 0 > H‘*oz I
e ¥ 0.2 B 4
28 e— | 05 2 = Lo
= } i) 1 \
- = ok Do E
- —_— \
OA_ ! o ————— L6000’ 62600600
0 2 4 6 () 2 4 6 01234567 8910111213
T T Ny

Figure 6.7: The jet equilibria with ny, = 5 and n, = 7 near the marginal curve are both
found to be Eckhaus unstable to an n, = 6 zonal jet perturbation. (a,d) Contour plots of the
equilibrium streamfunction, ¥¢(y), together with the zonally averaged zonal velocity U®(y) (thick
black line) for jet equilibria with n, = 5 jets at €/e., = 1.05 and n, = 7 jets at € /e, = 1.1. (b,e)
The structure of the mean flow streamfunction of the maximally growing S3T eigenfunctions for
the jet equilibria together with its eigenvalue o. (c¢,f) The energy spectrum of the corresponding
S3T eigenfunctions as a function of the meridional wavenumber n,. While both eigenfunction
show maximum power at n, = 6 they have also non-zero power spectrum at other wavenumbers.
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eventually produce chaotic and non-stationary trajectories of the statistics of the
turbulent flow.

We return to the equilibrium states that emerge after the homogeneous equilib-
rium is broken. We note that for 1 < e/e., < 1.2, while inhomogeneous equilibria
with n, = 5,6,7 are found, only the equilibrium with n, = 6 is found to be
stable. The equilibria with n, =5 and n, = 7 are both unstable with their most
unstable eigenfunction being a zonal jet with maximum power spectral power at
ny = 6 (cf. Fig. 6.7). This instability is the universal Eckhaus instability that
occurs near the neutral stability boundary and attracts all finite amplitude states
to the structure of the most unstable eigenfunction of the homogeneous state;
in this case n, = 6. The nonlinear dynamics near the marginal curve obey a
Ginzburg-Landau equation (cf. Parker and Krommes (2014)). It should be noted
that the accuracy of the approximation of the dynamics by the Ginzburg-Landau
equation is unfortunately limited only to parameter values that are very close
to the stability boundary, i.e., for ¢ < 1.01e.,. Also the jet mergers that occur
under Ginzburg-Landau dynamics are associated with the equilibration of the
Eckhaus instabilities and are very different from the jet mergers that are seen
in S3T simulations at higher supercriticality (cf. Parker and Krommes (2014)
and Fig. 6.3).

6.2 STABILITY OF FINITE AMPLITUDE ZONAL JET S3T EQUILIBRIA TO NON-
ZONAL MEAN FLOW PERTURBATIONS

The method described in the previous section for the stability of zonal jet S3T
equilibria to zonal jet perturbations (i.e. mean flow perturbations with n, = 0)
will be employed now to determine the stability of the zonal jet equilibria that
were discussed in the previous section to non-zonal mean flow perturbations.
(i.e. mean flow perturbations with n, # 0). The question we want to address
is: can a jet be stable to jet like perturbations (n, = 0) but still be unstable
to non-zonal large scale structures? We will demonstrate that all the stable jet
equilibria of the balloon diagram Fig. 6.2 are unstable to non-zonal perturbations.
We note that these equilibria were obtained with NIF forcing and with the eddy
flow being damped more strongly than the large-scale flow (both the jet and
non-zonal large-scale components). We have obtained similar results when both
flows were dissipated equally and the forcing was isotropic. Therefore we believe

the results presented here are not pathological. This instability of strong jet
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equilibria to non-zonal perturbations is intriguing because our theory at the
level of our numerical implementation predicts that in barotropic turbulence the
statistical equilibria must have a non-zonal component, contrary for example to
the observations on Jupiter which strongly suggest that the equilibria are almost
purely zonal.

Consider first the stability of two of the n, = 6 jet equilibria shown in Fig. 6.1,
the equilibrium for €/e., = 10, which is stable to jet perturbations, and the
equilibrium for €/e., = 200, which is unstable to jet perturbations. The cor-
responding S3T growth rates for zonal and non-zonal perturbations are shown
in Fig. 6.8. In both cases the equilibria are unstable to non-zonal mean flow
perturbations with 1 < n, < 7. We have also plotted the growth rates that would
obtain if the equilibrium were homogeneous and the eddy field had the eddy
energy zonal spectrum of the S3T equilibrium with jets (shown in Fig. 6.8¢,d).
We see that in general the presence of the jet increases the S3T stability of the
turbulent state. However, this increase of S3T stability with jet strength does
not eliminate the non-zonal instability of strong jets. For example consider the
instability of the strong jet equilibria with n, = 1,2 that are stable to n, = 0 jet
perturbations. The n, = 1 equilibrium state at /e, = 1000 is shown in Fig. 6.9
together with the streamfunction of the least stable mode for perturbations with
n, = 0 and the most unstable modes for perturbations with n, = 1,2. Maximum
instability for this jet equilibrium is found at n, = 1, as shown in Fig. 6.10a and
similarly for the n, = 2 jet equilibrium at ¢/e., = 800 in Fig. 6.10b.

Consider now the stability of the zonal jet equilibrium that we obtained with
non-broadband forcing in our discussion of modulational instability in chapter 4.
In that example, the fastest growing instability of the homogeneous state is a zonal
3-jet perturbation. In an S37T integration this zonal jet structure emerges and
saturates to a quasi-stationary finite amplitude 3-jet flow. This flow eventually
breaks giving way to a finite amplitude traveling wave with maximal power
at wavenumber (ng,n,) = (1,4) (see Fig. 4.7). We show here that this finite
amplitude wave with maximum power at (1,4) emerges because the 3-jet state is
unstable to non-zonal perturbations with the property that all the instabilities
equilibrate to a finite amplitude state with maximal power at (1,4). With the
methods described in the previous section we first obtain the 3-jet equilibrium
and then calculate its stability. The S3T equilibrium and the maximally growing
eigenfunction for n, = 0,...,6 are shown in Fig. 6.11 and the spectrum of the

ngy = 0,...,6 eigenfunctions is shown in Fig. 6.12. The growth rate of the 3-jet
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Figure 6.8: The growth rate of the maximally growing S3T eigenfunction of the 6-jet
equilibrium at supercriticality /., = 10 (panel (a)), and €/e.,, = 200 (panel (b)) as a function
of the zonal wavenumber n, of the perturbation (blue line, —9—). In (a) the jet is S3T stable and
in (b) unstable. The jet that is stable to n, = 0 becomes unstable for non-zonal perturbations.
For comparison we also plot the growth rate of the unstable homogeneous equilibrium with
perturbation energy equal to that of the inhomogeneous equilibrium (red line, /=—). The
equilibrium perturbation energy associated with the 6-jet equilibrium flows is shown respectively
in panels (c) and (d). The presence of jets is seen to generally increase the S3T stability of the
flow. Other parameters as in Fig. 6.2.
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Figure 6.9: Stability of the zonal jet S3T equilibrium with n, = 1 jet at £/e., = 1000
(a): Contour plot of the equilibrium mean flow streamfunction, ¥¢(y), and a plot of the zonal
velocity, U®(y), (thick black line). The jet maximum is 4.1 and the minimum is —3.3. The
mean flow contains 92% of the total energy of the flow. (b,c,d): The streamfunction of the most
unstable mode, 6, for zonal perturbations (n, = 0) (panel (b)) and for non-zonal perturbations
with ny, = 1 (panel (¢)) and n, = 2 (panel (d)). The non-zonal n, = 1 eigenfunction is
the most unstable mode while the jet is stable to zonal jet (n, = 0) perturbations. (e):
Demonstration of the convergence of the power method iteration towards the maximum growth
rate for perturbations with n, = 1,2. Note that the coefficient of linear damping of the mean
flow (whether zonal or non-zonal) is ten times smaller than that of the perturbation field. The
forcing is NIF (detailed parameter specification can be found in Fig. 6.2).
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Figure 6.10: The growth rate of the maximally growing S3T eigenfunction of the 1-jet
equilibrium shown in Fig. 6.9a as a function of the zonal wavenumber n, of the perturbation
(panel (a)) and similarly for the 2-jet equilibrium at ¢/e., = 800 (panel (b)). Parameters as in
Fig. 6.2.
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as function of the n, is shown in Fig. 6.13. While the 3-jet is stable to jet
perturbations it is unstable to non-zonal perturbations with n, < 7. (Note that
the stochastic forcing has power only at (7,0)). Substantial growth occurs for
n, = 1,3,6 and maximal growth for n, = 6. While there is instability at both
n, = 3 and 6 at finite amplitude all instabilities are attracted to a n, = 1 state
with maximal power at n, = 4 with approximately the spectral structure of
the n, = 1 instability. This phenomenon of saturation of the instabilities to
the structure of an instability of smaller growth rate requires further study; it
appears that there is at play an Eckhaus instability for non-zonal states. We
witnessed similar behavior also in cases in which the homogeneous state was more
unstable to non-zonal perturbations but the instabilities saturated into zonal jets.
Thus the transition from a zonal to a non-zonal flow in the S3T simulation of
section 4.3 is caused by the secondary S3T instabilities of the finite amplitude
3-jet saddle equilibrium that emerges from the homogeneous background. This
complex of phenomena predicted by S3T is remarkably reflected, with the same

time sequence, in corresponding NL simulations (see Fig. 4.4 in section 4.3).
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Figure 6.11: Stability of the zonal jet S3T equilibrium for the case presented in Fig. 4.8. (a):
Contour plot of the equilibrium mean flow streamfunction, W*¢(y), with the zonally averaged
zonal velocity, U°(y), (thick black line). (b-h): The most unstable mean flow perturbation
streamfunction, 6V, for perturbations with ny = 0, 1,...,6 together with their corresponding
eigenvalues, s. While this zonal jet S3T equilibrium is stable to zonal jet perturbations (n, = 0)
it is found to be unstable to non-zonal perturbations with maximum instability occurring for
ng = 1,3,6. The maximal growing eigenfunction has the (1,4) structure that eventually emerges
both in the NL and in the generalized S3T simulation (cf. Fig. 4.4 and Fig. 4.7 respectively).
(i): The evolution of the growth, A, for n, = 1,2 perturbations showing the convergence to
the corresponding growth rates, s, (dash-dotted line). Parameters: 8 = 4.9, linear damping
coefficient r = 0.01, stochastic forcing with single harmonics with wavenumber (7,0) and energy
injection rate e = 4 x 1075,
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Figure 6.12: (a) The energy spectrum of the jet equilibrium shown in Fig. 6.11a as a function
of the meridional wavenumber ny. (b-h) The energy spectrum of the mean flow perturbations
with ny =0,1,...,6 as a function of the meridional wavenumber n,. The n, = 0 eigenfunction
is a gy = 0 Bloch state, while eigenfunctions n, = 1,...,6 are gy = 1 Bloch states. Other
parameters as in Fig. 6.11.

Figure 6.13: The growth rate of the maximally growing S3T eigenfunction of the 3-jet
equilibrium shown in Fig. 6.11a as a function of the zonal wavenumber n, of the perturbation.
Other parameters as in Fig. 6.11.
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6.3 STABILITY OF FINITE AMPLITUDE NON-ZONAL TRAVELING WAVE S3T
EQUILIBRIA

Up to now we have investigated the stability of zonal equilibria to zonal and
non-zonal perturbations. We now show how to calculate the stability of non-zonal
wave S3T states. For the calculation we adopt the method for calculating the
sensitivity to initial conditions of a trajectory (Z(x,t),C(Xq,Xp,t)) of the S3T
system. If the state trajectory is perturbed by (§Z,C) then its linear stability

(i.e. its Lyapunov exponent) is obtained from a simultaneous integration of the

system:
OZ+J(W,Z+B-x)=R(C) - Z, (6.5a)
OCap = [Aa(U) + A(U)] Cap + £ Qui (6.5b)
8,67 = A(U)8Z + R(6C) (6.5¢)
0 5Ca, = [Aa(U) + Ay(U)] 0Cap + (840 + 0.4) Cap - (6.5d)

While with this method we determine unequivocally the largest Lyapunov exponent
of a perturbation trajectory, we can also estimate the stability of a traveling
wave state of the S3T system if the S3T state persists in that state despite being
unstable. This often occurs because the unstable S3T states have many stable
directions (they are saddles) and because the S3T equations are noiseless the
unstable directions take a long time before they obtain appreciable magnitude.
Under these conditions integration of the tangent linear system (6.5¢)-(6.5d)
produces good estimates of the growth rate of the unstable traveling wave solutions
of (6.5a)-(6.5b).

With this method we consider the stability of the traveling wave S3T state
shown in Fig. 6.14. This finite traveling wave state emerged as a quasi-equilibrium
of the finite amplitude equilibration of the most unstable non-zonal eigenfunction
of the homogeneous equilibrium. We show that this non-zonal state is unstable

to zonal perturbations (n, = 0) which saturate into a predominantly zonal state.
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Figure 6.14: Stability of a non-zonal traveling wave quasi-equilibrium S3T state. (a): A
snapshot of a finite amplitude state streamfunction, ¥, that consists of a wavenumber (1,4)
wave traveling westwards. This state after long time (around 3000 time units) transitions to a
wavenumber (0, 2) nearly zonal jet structure. (b): The mean flow streamfunction, §¥, of the first
Lyapunov vector of the state shown in (a) together with its corresponding Lyapunov exponent,
X. The Lyapunov vector of the doubly periodic quasi-equilibrium is neither monochromatic in z
nor y. However, its maximum power is concentrated at (ng,ny) = (0,2). (¢) Demonstration of
the convergence towards the maximum growth rate, A = 0.0033. Parameters: § = 12, r = 0.01,
rm = 0.005, IRFn forcing with kf = 6, 6k; = 1 and € = 3scn, = 5.24 x 107%. Stability
calculations were performed at resolution N, = N, = 32 which results in a state variable of (6.5)
with dimension 2 x 10°.
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Conclusions

In this thesis we have presented a theory for the formation and maintenance of
eddy-driven jets in planetary turbulence. The theory presented, called Stochastic
Structural Stability Theory (S3T), is a non-equilibrium statistical theory which has
its basis in wave—mean flow interaction theories. It studies the closed dynamics of
the first two cumulants of the full statistical state dynamics of the flow, and neglects
or parametrizes third and higher-order cumulants. Neglect or parametrization
of third and higher order cumulants is equivalent to neglect or parametrization
of the eddy—eddy interactions in the equations of motions. Thus, in the specific
closure only the non-local in wavenumber space interaction between large-scale
flows and the smaller scale eddies is allowed while local wavenumber interactions
among eddies are not allowed. We study within this statistical closure large-
scale structure formation and maintenance in stochastically forced—dissipative
barotropic turbulence on a S-plane.

We have performed an extensive comparison of jet formation as predicted by
the S3T dynamics and as predicted by direct numerical simulations of the fully
nonlinear equations. The emergence and equilibration of zonal jets in the S3T
dynamics and, moreover, the remarkable agreement of their predicted structure

with the jets observed in direct numerical simulations, provides a constructive
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proof that turbulent cascades are not required for the formation of zonal jets
in B-plane turbulence. Emergence and equilibration of zonal jets occurs due to
cooperative quasi-linear mean flow—eddy interactions that is captured by S3T.

The S3T dynamics is autonomous and deterministic and therefore may have
fixed point solutions. These solutions are statistical equilibria of the turbulent
flow that describe both the large-scale structure mean flow (1st cumulant) as well
as the second-order eddy statistics (2nd cumulant). S3T allows the study of the
stability of such equilibrium states. Instability of a statistical equilibrium signifies
transition of the turbulent regime to a different attractor (i.e. to a different climate
state). Such an equilibrium state of the statistics is the homogeneous turbulent
state with no mean flow. We have demonstrated that the homogeneous state
becomes unstable at analytically predicted critical parameter values and the
flow undergoes a bifurcation becoming inhomogeneous with the emergence of
large-scale zonal and/or non-zonal flows. The mechanisms by which the turbulent
Reynolds stresses organize to reinforce infinitesimal mean flow inhomogeneities,
thus leading to this statistical instability, are extensively studied for various
regimes of parameter values (planetary vorticity gradient, dissipation rate and
turbulent energy injection rate). It is shown that for small and modest values
of the planetary vorticity gradient, 3, the upgradient fluxes responsible for the
large-scale structure formation instability are induced by the Orr mechanism,
while for large 8 they are induced by resonant wave triads. The dependance of
the instability on the spectrum of the stochastic excitation was also studied.

The relation between the formation of large-scale structure through modula-
tional instability and the S3T instability of the homogeneous turbulent state was
also investigated. We have demonstrated the formal equivalence between the 4MT
system, that approximates well the modulational instability of coherent Rossby
waves, and the S3T instability of a homogeneous turbulent state. However, we
have demonstrated that the 4MT dynamical framework is inadequate for capturing
the finite amplitude equilibration of the instabilities.

We also presented methods for studying the stability of inhomogeneous turbulent
equilibria. We demonstrated that the phenomenon of jet merging is properly
understood as an S3T instability of a finite-amplitude mean flow state and
therefore is properly understood in the framework of statistical state dynamics.
Also, we have shown that the transition from zonal to non-zonal turbulent states
is also predicted by S3T stability analysis.

The S3T closure produces an analytical, predictive and quantitative theory for
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turbulence that proceeds directly from the equations of motion. It provides a way
of determining turbulent statistical equilibria (climate states of our model) and

moreover determining their stability.
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Construction of the stochastic forcing and
demonstration that the energy injection rate
induced by a temporally delta-correlated
forcing is independent of the state of the

system

The stochastic equations (i.e. egs. (2.1) or (2.6)) are nonlinear differential equations
with additive stochastic excitation of the generic form ;¢ = L(¢) +N (¢, ) + /€€,
with £ a linear operator and N a nonlinear operator. The stochastic function
&(x,t) is taken to be a Gaussian process with zero mean, i.e., ({(x,t)) = 0, and
a homogeneous function of both space and time. It is further assumed to be
delta-correlated in time but spatially correlated with spatio-temporal covariance
(€(Xa, t)E(xp, 1)) = Q(Xa,Xp)0(t —t') (the averaging operator (e) denotes an
average over forcing realizations). The delta correlation in time is a very crucial
assumption because it implies that the energy injection rate is constant and
independent of the state the system and depends only on the amplitude factor

when @ is appropriately normalized. This allows us to know the energy injection
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rate once we have specified the forcing without any reference to the flow that
develops. If the stochastic excitation were not delta correlated, i.e., if for example
it were a red-noise process, the energy injection rate would depend on the state

of the system.

A.1 CONSTRUCTION OF THE STOCHASTIC FORCING

We show first that the spatio-temporal homogeneity of the random field & implies
that (£(xq,t)E(xp,t')) = F(xq — Xp,t — t’), which in turn implies that the spatial
covariance of the forcing, @, is a function of the difference coordinate x, — xp,
Le., Q(Xa,Xp) = Q(Xa — Xp).

Since ¢ is chosen to be homogeneous its statistical properties are invariant
under translations, that is (£(xq,t)&(xp, 1)) = (€(x4 + a, 1)E(xp + @, 1)) for any

a. By expanding £ in Fourier series,

2
xt) = [ atlkt)e (A1)

with £(—k, t) = £(k, t)* in order that £ be real valued, we have that:

(61601 = [ 5 8 (G DEO ) Fxec (2a)

while

L/‘r‘r>

(€xa + )G+ at) = (1 (! 1)) el i ik

(A.2b)

For (A.2a) and (A.2b) to be equal we must have e!®tK) @ — 1 for every a, which
requires that k’ = —k and which in turn implies that the wavenumber covariance
of the field is of the form: (&(k, )E(K',¢')) = (2m)2 (£(k, )é(~k, ¥) ) 6(k + k).

Consequently,

d’k
(2m)?
which is a function only of the difference x, — x3. Similarly, we can show that

temporal homogeneity implies that the <§(k, )E(—k, t’)> = f(k,t —t').

Note if the random field is homogeneous only in the zonal z direction, then

(€xar ) xn,#)) = [ 55 (€l é(—k,t)) el (A3)
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the above argument would require that el(h=Tk2)oe — 1 for every a,, which
would imply k, = —k!, and as a result the spatial covariance of a random field

homogeneous in = should be a function of x, — zp, Yy, and yp.

To construct the delta-correlated Gaussian stochastic excitation we choose the

Fourier amplitude of (A.1) at each wavenumber k and at each instant to be:

£k, 1) = w(k) miey (A.4)

with w(k) the amplitude at wavenumber k, satisfying w(—k) = w(k)*, and ny ¢
a complex valued Gaussian random variable of k and ¢ satisfying 7k = 7y,
with zero mean and delta-correlated covariance both in wavenumber and time:
<77k,t771t/7t/> =0(t —t')o(k — k’). Equation (A.4) implies that ({(x,¢)) = 0 and,
moreover (A.3) can be written as,

d2k d2k/ . iy
(8 a8 ¢ // w(k)w(k') (meemee) ek ¥a gk X
ko d2k’ . . e i
] o o w0 (i) e
d2k ik-(xq—X%
- 5<t—t/)/ (2w)4|w(k)|2€k( =) (A.5)

(in the second equality we changed the integrating variables k — —k’). Therefore

the spatial structure of the covariance, @, is given by:

2 2 21
- [ O ey [ g e (rg
The spatial covariance () turns out to be an even function of its argument, since
|w(—=k)| = |w(k)|. This is physically expected due to the homogeneity of £, which
implies the exchange symmetry (£(xq,t)E(xp, ")) = (£(xp, )& (Xq,t')). Moreover,
equation (A.6) shows that the Fourier transform of @ besides being real is also
non-negative, as is demanded by Wiener-Khinchin theorem. The statement that
homogeneous covariances have real and positive Fourier transforms is often also
referred to as Bochner’s theorem.

That the covariance (£(xq,t)¢(xp,t')) turns out to be a function only of the
difference coordinates x, — X, may be alternatively seen as a result of the fact
that each of the Fourier components of the stochastic forcing corresponds to a

different random variable which is uncorrelated to the others, except for the pairs
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k and —k.

We construct a discrete representation of £ in time as follows. Discretize time
with time steps h. The complex random variable ny ; at time ¢t = jh, 7 =0,1,...,
is taken to be

1
= —— (Xur + 1Y) . A7
Tkt m ( k,t k,t) ( )

with X and Y real valued random numbers taken from a Gaussian number
generator with zero mean and unit variance; we further set X_y; = Xy ; and
Y xi=—Yx; The V/h in the denominator ensures that (A.7) is delta-correlated in
time satisfying as h — 0 the discrete expression of the delta function requirement,
e <77k,t771t,t'> dt’ = 1. Note that because X and Y are normally distributed, the
probability density function of 7y ¢, P(nk+), is only a function of the amplitude of

Tk,t, S

P(nt) = P(Xx» Yieyr)

= P(Xiy1)P(Yi,t)

g 1 G_EXIQ(,t 1 e %Yl?t
V2T V2T
1 1 2

— e 3lmel A8
27Te ’ ’ (A-8)

which is only a function of the absolute value of the ny ;.

A.2  PROOF OF THE RELATION (§(Xq,t)C (xp,t) + (' (Xa, t)E(xp, 1)) = V€ Q(Xa—

Xb)

In this section we calculate the term (£(xq,t)(" (xp,t) + ¢'(Xa, t)E(Xp, t)) in (2.11),
where (’ satisfies the NL eddy equation (2.4b).

We should note that because the stochastic forcing is additive (it does not
depend on the state of the system) there is no need to distinguish between
the mathematically convenient Itd interpretation of the stochastic differential
equations, in which the state at t is uncorrelated with the stochastic forcing at
the same time ¢, i.e., (¢(x,t)€(x,t)) = 0, and the physically relevant Stratonovich
interpretation in which state and forcing are correlated at the same time. Both
interpretations lead to the same results (Oksendal (2000, p. 35)). Throughout
this thesis we have adopted the Stratonovich interpretation.

To calculate (£(xq,t)( (xp,t) + ¢'(Xq, t)(Xp, t)) We write the solution of (2.1)
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in integral form as

((x,) = ((x,0) — /Ot [ (¥0x,5), ¢, 5) + B-x) = ¢, 5)] ds + ﬁ/otg(x, s)ds .
(A.9)

from which it follows that the eddy vorticity is given as:

) = ¢0c0) = [ {7 (66x,9), 6.0+ 6-x)

— T[J(w(x,s),C(x,s) +,8-X” —rC'(x,s)} ds + \E/Otﬁ(x,s)ds .
(A.10)

We want to calculate ({(xq,t)¢’(xp,t)). From (A.10) we have:

(§(xa, )¢ (30, 8)) =
= (el 100 0)) — [ ({00107 (805,51, C,) +.-%)
= E(xas ) T[T (0, ), C(xs,8) + B x) | = r€(xas )¢ (30, 8) } ) ds
+VE [ (el 10, ds (A11)

The initial state of the system is clearly uncorrelated with £ at time ¢, (§(xq, t){’(xp,0)) =
0. The first integral on the r.h.s. does not contribute to the correlation since
i) there is no correlation between stochastic forcing at time ¢, £(x,t), and state
of the system at any time ¢’ < ¢ and ii) also because the integral is unchanged
if calculated over the interval s € [0,¢) instead over s € [0,¢] since at time ¢,
(€(X4,t)¢"(%p,t)) < 00. The excluded point s = ¢ is only a point of measure zero.

Therefore, the only non-zero contribution to (£(xg,t)¢’'(xp,t)) is the last integral,

(60, 0 0x0,1)) = V2 [ (€Cxart)E0x0,)) d

:\/E/OtQ(xa—xb)&t—s)ds

= f@(xa — Xb) , (A.12)

where the integration of the delta function gives 1/2. Similarly, (¢'(Xq, t)¢(Xp,t)) =
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(Ve/2)Q(x4 — xp), leading to
(€(Xas t)C (xp, ) + (' (Xa, 1)E(xp, 1)) = VEQ(xq — Xp) - (A.13)

A.3 ENERGY INJECTION RATE IN THE NL AND QL SYSTEMS BY THE STOCHAS-
TIC EXCITATION

The energy of the flow is defined as E' = [d?x i|u|? and the time rate of change
of E, assuming periodic boundary conditions, is given after an integration by

parts as

dE d 1
- =% /d2x (- AY) = —/d2x YO - (A.14)

We calculate the contribution of each term of 9;¢ from (2.1). After integration

by parts, the Jacobian term gives

/d2x¢J(¢,g+ﬁ-x):o, (A.15)

as expected because the Jacobian terms merely redistributes the energy among

the flow scales. The rate of energy due to the dissipation is
r/d2x Y¢ = —r/d2x |Vy|? = —2rE < 0. (A.16)
The ensemble average energy injection rate from the stochastic forcing is
- VE [@x e (A7)

Since £ is a stochastic variable we seek to determine the ensemble average energy
injection rate over all forcing realizations. To obtain this estimate we proceed
as in (A.9). As argued above, the first integral on the r.h.s. of (A.9) does not

contribute at all to the correlation (1(x,t)¢(x,t)) and the only contribution comes
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from the last term in (A.9) so that,

(€6 )P (x,1)) = (€xar ) (x0,1))
:f

Xaq=Xp

Ang(xa — Xp)
Xaqg=Xp

f/ d*k Q 1k(xa—xb)

2 —k2
Xa—Xp
%k Q(k
——f/ - %2 . (A.18)

From (A.17) we have that the energy injection rate is

_\@</d2x w(x,t)g(x,t)> —e (/ (‘;1; Q2k2 ) (/d2 ) L (A19)

Therefore, if the covariance spectrum is normalized according to

’k Q(k)

then the energy injection rate per unit area is €.
From (A.15), (A.16), (A.19) and (A.20) we conclude that the domain and
ensemble averaged total energy of the flow, (E) = ([ d®x)~'E, satisfies:

d(E) _
— e (B, (A.21)

and this implies the total energy the flow (the sum of the eddy and mean flow

energy) will always approach with time the constant value:

(B) = —. (A.22)
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General properties of S3T equilibrium

solutions

Assume that (Z€¢,C¢) is an equilibrium solution of the S3T statistical state
dynamics governed by (2.13) satisfying:

J(U¢ 24+ B8-x)—R(C) + Z¢=0, (B.1a)
[Aa(U) + A (U)] €5y +2Qup =0, (B.1b)

with U® =2 x VA~1Z¢.

We show first that when A° = A(U°) is stable then there exists a unique
Hermitian and positive definite solution C€¢ of (B.1).

When the operator (A§ + Af) is invertible then (B.1b) has a unique solution.
The spectrum of (A7 + Af) is p; + pj, 4,5 = 1,2,... where p1; are the eigenvalues
of A°. If A° is stable then Re(u;) < 0, which implies that Re(u; + ) < 0 for
every 7,7 and hence (A$ + A7) is invertible. So a unique C® that solves (B.1)
exists. We now show that it is a physically realizable solution, i.e., it is Hermitian

and positive definite, by giving the explicit expression of the solution. We verify

133



that the solution of (B.1) is

t
C(xq,%p) = € lim easehsQ(x, — xp) ds (B.2)

t——+oo 0

since

(A5 +45) o = e lim /0 t (AG + A5) easetisQqy ds
=¢ lim ot(fs (eAZS AisQab) ds

t—+o00

t
: AS s A¢s
=¢ lim [e a b }

t—4o00 Qab s=0

. e e
= —€Qup +e lim eAateAs Qb
t—+o0

= —& Qab s (B.S)

as limy— 40 eAateAitQ,, vanishes when A° is stable.

From (B.2) it is clear because Q(x) = Q(—x) that C is Hermitian, i.e., it
satisfies the exchange symmetry Cy, = Cp,. It is only left to prove that C¢ is
positive definite. A real function F(x,,X;) is positive definite if and only if for

every complex function f,

/ dx, dxy F(xa,x5) f(xa) f(x5)" >0 . (B.4)

Consider a positive definite homogeneous covariance, like the forcing covariance

Q@. Then for all functions (or even distributions) f we must have:

J[ dxad Qxa = x0) £x) f00) =
_/ d2k //dxadxb Q( Ve ik x“_xb)f(Xa)f(xb)*

:/(d2k Q(k) </dxa elkxe f Xa)</de€1kxbf(Xb))*

>0, (B.5)

This implies that Q(k) > 0 given that this integral must be positive for all

functions f. (This is Bochner’s theorem.) We now show that C* is also positive
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definite. Indeed from (B.2) we have for all functions f:

/ dx, dxy C(Xq,%xp) f(%a) f(xp)" =
= 5/ dx, dx; /OOO ds [eAgS A Qx4 — Xb)} J(xa) f(xp)"

=¢ OOO ds/ (;172:){2 Q(k) ‘/dx (eAeS eik'x> f(x)‘2 >0. (B.6)
Note that,
C(Xq, Xp, t) = eAa et C(xq, %3, 0) + €/Ot ea e 5Q(x, — xp) ds | (B.7)
solves the time dependent S3T covariance equation (2.13b),
OCap = (AG + A ) Cap + £ Qui (B.8)

To show that make the change of variable s — ¢ — s in (B.7) and write the

covariance in the form

t
C(Xa,Xp, 1) = eAatebtC (x4, x3,0) + 5/ e (t=9) A (=9 ) (x, — x3) s
0

(B.9)

which satisfies (B.8). From (B.7) we see that if C(x,,X3,0) is positive definite,
then C(x4,Xp,t) is positive definite at all times ¢, irrespectively of whether A°
is stable or unstable and when A€ is hydrodynamically unstable C(xg,,xy,t)
diverges as t — oo. This implies that no S3T equilibrium exists when U*€ is
hydrodynamically unstable.

It should be noted that the time independent Lyapunov equation (B.1b) has
always formally a solution unless A° has a neutral eigenvalue, i.e. unless there
is an eigenvalue with Re(u;) = 0. However, the formal solution of (B.1b) for
A€ unstable is not positive definite and consequently is not physically realizable
given that all physically realizable states produce positive definite covariances (or
from the previous argument this non-positive steady state covariance solution is

unreachable from any physical initial covariance which generates through (B.9)
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only positive definite covariances). In order to see that consider the eigenrelation
of A¢ and its adjoint AT}

Au, = ppuy, ATy, = fpUp , M=1,2,.... (B.10)

The eigenvalues of A¢T are the complex conjugate of the eigenvalues of A€ and in

general the eigenfuctions u,, of A¢ and eigenfuctions v, of A¢T are not the same.?

Moreover, they satisfy the following relations:

(um,vn> = dmn (um,vm) (orthogonality) , (B.11a)

3 Un(Xa)Vn(Xp) _ §(x, —xp) (completeness) , (B.11b)

n (Um un)

where (e, @) denotes the inner product between two functions g and h, taken here
s (9.h) = J d*x g(x)*h(x).

Assume that 4° has an eigenfunction, say w1, with eigenvalue with Re(u1) > 0

with associated adjoint eigenfunction v;. We will show that the solution C*¢

of (B.1b) is not positive definite. Consider the integral

[ 2 [ a2 (A0 (xax0)] 07 () () =
= /d2xa/d2xb/dle Ae tn (Xa) U7 (X )Ce(x xp) V7 (Xq)v1(Xp)

()

=[x [ ’Zun Ul’u”) Co(x, xp) 03 (x o1 ()

'Um un)

. / dx, / 42, C°(xa, %) 0% (%a)01(Xp) | (B.12)

and similarly,

[ [ i [A5C° (oo x0)] v raen () =

— / A, / A2 C(%a, X5) v (Xa) 01 (%) - (B.13)

The adJomt At of operator A° is defined as the operator that satisfies
[ d*x g(x)* [ ] [d*x [.A“L )] h(x), for every functions g, h.

2Eigenfwnc‘c101{15 un and v, coincide only when the two operators commute, i.e., A°A°T =
At A°, in which case the operator A° is called normal.
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Using (B.12), (B.13) and (B.1b) we have that

[ [ iy [(AG+ ADC(xar 30| 07 (xa)r () =
= 2Re(u1) /dzxa/d2xb C¢(xq,Xp) V] (Xq)v1(Xp)

— ¢ / dx, / 25 Q(xq — xp) 0% (xa)01 (x5) < 0 | (B.14)

hence, because Re(u1) > 0, we conclude that

/dzxa/dsz C(Xq,%xp) V] (Xq)v1(xp) <O, (B.15)

which shows that C€ is not positive definite and hence not realizable when A€ is

unstable.

Further, in the absence of forcing, i.e., @ = 0, the equilibrium solution (Z¢, C¢ =
0) is hydrodynamically stable if and only if it is S3T stable. To see that consider the
S3T perturbation equations (2.25) about (Z¢,C® = 0) which for this equilibrium
simplify to:

0107 = A°5Z + R(5C) (B.16a)
0 6Ca = (A + A5 ) 0Ca; . (B.16b)

From the above equations we infer the equivalence between the stability of A€ and

the S3T stability of (Z¢, C€), which is governed by the upper-diagonal operator

AT R . (B.17)
0 AS+ A
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Numerical integration of the NL, QL and
S3T systems

In this appendix we present details of the numerical method used to integrate
the NL system (2.1), the QL system (2.6) and (2.17) and the S3T system (2.13)
and (2.21). The flow domain is taken to be a rectangle of size L, x L,, with
periodic boundary conditions on its boundary and discretized with N, x N, points,
N in the zonal and IV, in the meridional direction. The allowed wavenumbers in
this domain, for N,, N, even, are:

kj = QLi x <O,i1,j:2,...,i(Nj/2 - 1),—Nj/2) L=y, (C.1)

J

and moreover, the continuous Fourier transforms become discrete Fourier trans-

forms:
k. . Na/2-1
é(z) = / k)T — Y et (C.2)
g ko——Na /2
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with the continuous and the discrete Fourier amplitudes QAS(k:x) and dAsz related by

Ng/2—1

Glka) =21 > w0k — k) . (C.3)
kl=—Ng/2
To simplify notation we denote:
Nj/271 Nj/?*l
ZE Z , = Z . j=xy, (C.4)
6 4;=—N;/2 ¢ =1
kﬂéO £j>0

for any variable £.

C.1 NUMERICAL INTEGRATION OF NL AND QL SYSTEM

Both NL and QL systems are a stochastic partial differential equations of the

form:

Dp(x,t) = L (6(x,1)) + N (9(x,1),6(x,8)) + VEE(x, 1), (C.5)

with £ a linear operator and N a bilinear operator. We use pseudospectral
methods to evaluate £(¢) and N (¢, ¢). Time is discretized in equal steps, h, and
the deterministic part of (C.5) is advanced in time by h using a fourth-order
Runge-Kutta (RK4) scheme. After the completion of each RK4 step, the stochastic
excitation term, h+/e£(x, nh), is added to the state of the system (Godunov, 1959).

C.2 NUMERICAL INTEGRATION OF THE S3T SYSTEM

In this section we discuss the numerical integration of the S3T system. While
the state of the NL and QL has dimension N,N,, the S3T system has the far
larger dimension N, N, + Nng. This makes the numerical integration of the
S3T system extremely costly and special techniques need to be developed in order

to obtain resolved simulations.

C.2.1 NUMERICAL INTEGRATION ZONAL S3T SYSTEM

The S3T system which is computationally more easier to integrate is the zonal
mean S3T system (2.21) because of the homogeneity in the = direction. In that
case the dimension of the mean flow is N, and the dimension of the covariance is,

as we will show, at most NxNg.
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We first use the homogeneity in x to split the covariance equation (2.21b) into a
system of decoupled equations for the zonal Fourier components CN'kI of C', defined

as

C(Xaa Xb; t) = Z ékz (yaa Yo, t) eikz(xaixb) ) (C6)
ke

while the spatial forcing covariance is similarly expanded as

— Xb Zka 1 @ (Za—1) . (07)

Note that the zonal Fourier component ka is related to the forcing spectrum
Q(k) = [ d?(x, — xp) Qxq — Xp) e K Fe™%0) with k = (ky, ky), by

Q. (y ZQ etky(Wa—yp) (C.8)
Note also that if we take the x Fourier transform of ¢’
)= G (y,t) ™", (C.9)
ka

the eddy vorticity covariance, being homogeneous in x, can be written as

C(3%a, %5, 1) = (¢ (xa, )¢ (x5, 1))
= " (G (ar )i (g, 1)) Mmoo

)
= Z<Ckz Yar t)Cro (Y t)* > ke (@a=2s) (C.10)

which implies that
Cro (Yar Yort) = <5kz (Yas ), (yb,t)*> - (C.11)
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We can write:

Az,a(U) C(Xa, Xp, t) =
= Z {_ ik, Uy — iky (5 - 8§ayaUa) A;l — 1} C’kz (ya; yb,t) eikz(ﬂca—xb) :
k

= Z Az,kr,a(U) ékz (yaa Yo, t) eikx(za_xb) ’ (012)
ky

where

A, (U) = =ik, U — ik, (8 — 02,U) A1 =1, (C.13)

and similarly

)

Aup(U) C(%a, X5, 1) = Y Ay iy 5 (U)*Chi, (Y, g, ) € (Fe720) (C.14)
kz

Combining (C.6), (C.7), (C.12) and (C.14) we write equation (2.21b) as:
Z {aték'z (yav Yo, t) - {Az,kz,aaj) + -Az,kz,b(U)*} ékz (yOU Yo, t)
ke
— € ka (ya _ yb)} eikz(xa_xb) =0.
(C.15)

which implies that the covariance equation decouples to the N, equations

atékz (ya, Yo, t) =
= [Az,kl-,a(U) + Az,k’l-,b(U)*} ék“n (ya, Yb, t) +e le (ya - yb) . (016)

Covariance C' is real valued, implying that C_y, (ya,yp,t) = CN';;T (Yas Yp, t), and
therefore we only need to solve for k, > 0. Note also that the exchange symmetry

C(xq,Xp, t) = C(xp, Xq,t) implies CN'_kx (Ya, Y, t) = C’kx (Ya, Yp, t) and therefore

CN’km (yaayl)?t) = ékm (yb7ya7t)* . (017)

Moreover, from (C.16) we can see that we can integrate only the components k,
for which Qy, has power (as from uniqueness if Qx, = 0 and initially Cy, = 0
then Cj, = 0 for all times). By removing the wavenumber components for which
le_ = 0 we may remove also self-sustained turbulent states, i.e., the possibility

that a non-zero covariance component is maintained in the absence of forcing
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(which can happen when U produces a neutrally stable A, (U), when U is
time independent, or a A, ;. (U(t)) with zero top Lyapunov exponent when U is
time-dependent). These self-sustained states are singular in barotropic turbulence
because barotropic turbulence does not self-sustain and including them may
result in singular states that disappear with the introduction of even the slightest
forcing (see for example the states in Marston et al. (2008)). However, there
are particularly interesting self-sustained states in 3D turbulence (cf. Farrell and
Ioannou (2012); Constantinou et al. (2014b)). We do not include in the S3T
calculations wavenumber components that are not externally forced. In this way

we consider in (C.16) only the k, = 1,2, ..., Ny for which Qj, is non-zero.

We now formulate (C.16) on the discretized domain.

The Fourier coefficients (j, (y,t) on the discretized domain become a vec-
tor ¢, (t) with elements [C (1)]; = Ch, (yj,1), while the Fourier coefficients
Cr, (Ya, yp,t) and Qg, (ya — y») become matrices Cy, (t) and Qi, with elements
[Cr,(1))ij = Cr,(yi,yj,t) and [Qg,)ij = Qr,(yi — ;) respectively. Also ,the
mean flow U(y,t) becomes a vector U (t) with elements [U(t)]; = U(y;,t). The
symmetry property (C.17) requires that the C; and Qi matrices are hermitian,
ie., Cz = Cj. Relation (C.11) implies that [Cy,];; = <[Ckx]z [Ckx]j>> or simply
Ci, = <C ks C};x>, demonstrating that the Cj, matrices are also positive definite.

We express the S3T covariance equations (C.16) in terms of matrices Cj, and
Qy,. Term [.Az,kz@(U) + Az,k%b(U)*} C’km (Ya, Y, t) becomes in matrix notation
(Ao (U) + A o(U)] Cr, (g0, 9, ) = [ A, (U) Cr, (1) + Cr () Ay, (U]

bl

ab
(C.18)
where Ay, (U) is the time-depended matrix
A, (U) = —ik,U — ik, [B1 = (Uy,)| A1 1, (C.19)

with | the identity, Ay, the matrix approximation of ﬁgy — k2, A,;l its inverse
and U = diag(U), Uy, = diag(d;,U), where diag(e) denotes the diagonal matrix

with diagonal elements the values of its argument at the y collocation points. We
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thus end up with IVj, equations for (N, x NN,) sized matrices:

d
&Ckz (t) = AkI(U) Ckz (t) + Ckz (t) A]%(U—)Jr + é‘ka , fork,=1,...,N; .
(C.20)
Turning to the mean flow equation (2.21a) we express the Reynolds stress
divergence term, [%(Aglaza—kAglaxb)Cab} __ in terms of C,. The Reynolds
stress evaluated at y = y; is, o
La-1 -1
5 (8510, +4,10s,) Cay _
2 Xa=Xp |y=q:
Y=y,
1/, — . — 2 ikz(xa—1
= Z {2 (1kx Ak;a — ikg Akzlyb) Chy (Yas Y, 1) € o (@a b)} B
ko Xa=Xp Y=y,
1 .
=2 { [ikz BLIC, (1) + Ci, (1) ik, Agl)q el’“w@a—wb)}
k 2 ¢ ‘ ab Xa=Xp |9)—n, .
T Y=Y;

=3 Re { [(lkm A,;:) Cp, (t) + Cp. (1) (ikm A,;l)q | }
ke 23
k

JJ
x
k>0

The discrete S3T system in the zonal mean—eddy decomposition takes the form:

d
dt

d
—Cy, (t) = Ak, (U) Ci, (t) + Ci, () Ap, (U)' +6Qy, , forky=1,..., N,

dt
(C.22b)

Ut) = % 2 Re [Vecd (ik. A,;}Ckz(t))] ~U®), (C.22a)
k=1

where vecd(M) denotes the vector with elements the diagonal elements of matrix
M. The homogeneity in the zonal direction has resulted in reducing the dimension
of the S3T system from N,N, + N:?N; to Ny + 2NkN§ (the factor 2 comes
up because Cy, are complex valued). This is a tremendous reduction, i.e., for
N, = Ny = 128 and N}, = 15 this gives around 550-fold decrease in the dimension
of the S3T state variable.

In previous S3T studies (for example in Farrell and IToannou (2003, 2007);
Constantinou et al. (2014a)) the Reynolds stress divergence term (C.21) appears
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with a factor 1/2 instead of a factor 2. The reason is that in those studies Fourier

transforms are defined as ¢’ = > ., Re (gﬁkz eikzx). This results in a factor 1/2
ke>0

difference in the Fourier coefficients of ¢’ and in turn a 1/4 difference in C, .
To integrate (C.22) a RK4 time stepping scheme is used.
C.2.2 NUMERICAL INTEGRATION OF THE GENERALIZED S3T SYSTEM

The generalized S3T system (2.13) does not a priori posses any homogeneity in
x, so the dimension of the S3T state is N, N, + NgN; instead of N, + 2NkNy2,
when the flow is homogeneous in x and is represented by Ny zonal waves.

On the discretized domain the mean flow streamfunction, W(x,t), is represented

by an (N;Ny)-column vector with elements:
[P (t)]p = ¥(xp,t) . (C.23)

where index P runs through 1,2,..., NN, covering all the (z,y) points of the
domain. All other mean flow fields can be expressed in terms of W. The eddy
vorticity covariance C(Xq,Xyp,t) is represented by an (N;Ny) % (N N,) matrix,

C, with elements:
[C(t)]pg = C(xp,xq,t), for P,Q=1,...,N;N, . (C.24)

Similarly, the spatial forcing covariance is represented with matrix Q with ele-
ments:

Qlpg = Q(xp —xq), for PQ=1,...,N;N, . (C.25)

In matrix form C(xq,xp,t) = (¢'(Xa, 1) (Xp, 1)) is

) = (¢tem”) (C.26)

where ¢ is the (N, Ny)-column vector with elements

[C®)]p = (xp,t) . (C.27)

We express the S3T covariance equation (2.13b) in terms of matrices C and Q.
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For example, term (U,0;, + U0y, )C(Xq,Xp,t) becomes in matrix notation:

(U (0 1), + U (%5, 1)02,] C 30,3, ) = {[U(1) D] €(t) + (1) [U(1) D"}
(C.28)

)

with D, the matrix approximation of 9, and U = diag(U) the diagonal matrix
with elements the values of U(x,t) at the (x,y) collocation points. Similarly, we

transcribe in matrix form all other terms in (2.13b), which becomes

%c(t) _ A(U)C(t) + C) A(U)T +£Q, (C.29)

with A(U) is the time-depended matrix
A(U) = —(UD, + VDy) + [(AU — B,1)D, + (AV + B, )D,] A~" — 1, (C.30)

and A the matrix approximation of the Laplacian operator A and A~ of its
inverse.
In the mean flow equation (2.13a), we express the Reynolds stress divergence

term, R(C) in terms of the matrix C. At point xp we have:

R(C)| =—-V. [12 < (Vals' + Via, ) cab]
X=Xp 2 Xa=Xp X=Xp
— 1 . -1 -1 -1 -1
=3V (00,821 + 0,0 —0,,8." = 05,85 ) Cap
Xa=Xp X=Xp
1 —1 -\T
9 D. [ {(DyA ) CcC+C (DyA ) ]ab} Xa =% | e p
+1ip H—(D a')c+c(p Al)T] }
2 Y abl x,=xy X=Xp
= |D, vecd |(D,A7!) C| +D, vecd |- (D,A7}) C C.31
D veed [(D,87) €] + D, veed [ (D8 ]| . (can)
Therefore the discrete S3T system becomes in matrix form:
d
G20+ (®(),2(t) + B-x) = R(C(t) - Z() , (C.32a)
d
7S =AU)C() +C(1) AU +eQ, (C.32b)

where R produces the Reynolds stress divergence for covariance C and is defined
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R(M) = D, vecd [(D,A™") M| + D, vecd |~ (D, A7) M] . (C.33)

The Jacobian in (C.32a) is calculated pseudo-spectrally. To integrate (C.32) a
RK4 time stepping scheme is used.
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Bloch’s theorem

In this Appendix we will use Bloch’s theorem to prove (3.4) and (4.4).

Consider the eigenvalue problem:

A(x) fo(x) = 0 fo(x) , (D.1)

where A is the linear differential operator,
AG) = bx) + by (x)0,, + 3 byr(x)02 4+ (D.2)
J Jk

Suppose that the coefficients of A are invariant under the translation x — x + a,
where a is any integer multiple of the constant vector ag. This implies that if
f(x) is an eigenfunction of A so is f,(x 4+ a). To see that set x — x+a in (D.1)
and use A(x + a) = A(x) to obtain A(x)fs(x+a) =0 f,(x+ a).

Define T} the translation operator:

Ty f(x) = f(x+1) . (D.3)
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Operators A and T, commute, i.e., ATy = Ta A. This can be established by
considering, without loss of generality, the action of T, A on an eigenfunction of A:
[Ta A(x)] fo(x) = Ta [Ax) fo(x)] = 0 Ta fo(x) = 0 fo(x +a) = A(x +a) fo(x +
a) = AX) [Tafo(x)] = [A(xX)Ta] fo(x). The commutation of A and T, implies
that the eigenbasis of A and T, can be chosen to be common.

This is not automatically achieved. For example all plane waves of the form
el are eigenfunctions of T, but not necessarily of A. From Fourier analysis
we know that because every function can be written as a superposition of plane
waves, the eigenfunctions of A will be of the general form f,(x) = [ d%q c(q) e'9*.
To determine the constraints imposed by the periodicity of A on the eigenfunction
it is only required, because A and T, commute, to render f,(x) an eigenfunction
of T,. Since a is an integer multiple of ay, to obtain the most general eigenfuction
satisfying all symmetries of A we need to render f,(x) an eigenfunction of Tj,.

Then, since
Taofo’(x) _ Tao |:/ d2q C(q) eiq~x:| _ /d2q C(q) eiCI'Xeiq'aO , (D4)

if f,(x) is to be an eigenfunction of Ty, then €98 cannot depend on q and should
be of the form €92 = ¢, This holds when q = n + mpy with m any integer,
po the vector:!

po = 2mag/|ag)? , (D.5)

that has the property that pg - ag = 27 and n a constant vector satisfying
In| < |po|/2 = 7/|ag|. This restricts the Fourier spectrum of the eigenfunction

fs(x) allowing only power at discrete wavenumbers. By writing ¢(q) in the form
c(q) =Y Cnd(q—n—mpyg) , (D.6)

we obtain that a general eigenfunction of T} is:

f(x) =" Cpelntmpo)x = ginx§" o impox (D.7)
9(x)
This implies that the general eigenfunction of T,, and A is of the form e™*g(x),

for any n satisfying |n| < 7/|ag|, and for periodic functions g(x) with period ay,

'In solid state physics po is referred to as the fundamental vector of the reciprocal lattice.
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i.e., g(x +ag) = g(x). This the content of Bloch’s theorem about the structure of
the eigenfunctions of operators with periodic coefficients.

In the special case that A is homogeneous, i.e., its coefficients do not depend
on x, A commutes with T, for every vector a. From (D.7) we see that in this
case ¢g(x) must be constant and therefore the only common eigenfunction of A

and of all the T’s is the single harmonic
fo(x) = Coe™* | (D.8)
with no restriction on n since |ag| may be taken infinitely small.

Another way at arriving at the same result is to note that eigenvalue e™20 of
T,, is degenerate and the degenerate eigenfunctions form a subspace G, spanned
by €'9% with q = n + mpg, m = 0,41,..., po - a9 = 27 and |n| < 7/|ag|, as
previously. The common eigenfunctions of A and T,, will thus be indexed by
n and for each n will be linear combinations of basis of Ga, (as in (D.7)). To
arrive at the homogeneous result (D.8) consider a decreasing sequence of ay, i.e.,
ag,a9/2,a0/22,. .., each associated with its own degenerate subspace for an n.
The eigenfunctions of A for that n will belong to (521 G, /25, Which has the only
in-x

element: e™*, with n unrestricted.
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Derivation of the eigenvalue relation for the

S3T stability of a homogeneous equilibrium

E.1 EIGENVALUE RELATION FOR HOMOGENEOUS S3T EQUILIBRIUM

Here we derive an analytic expression satisfied by the eigenvalue ¢ that determines
the stability of the homogeneous equilibrium (3.1). The eigenvalue problem to be
solved is (3.3),

§07 = A°6Z +R(5C) , (E.1a)
50Cap = (A + A7) 0Cup + (040 +0.4,) CG - (E.1b)

We have included in (E.1) also hyperdiffusive damping of the form: —(—1)"15, A" .
For h = 1 this is normal diffusion, while for h > 1 is hyperdiffusion of order 2h.
With this damping the operator A° becomes:

A =2 (Bx V)AT =14 (=1l Al (E.2)
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Equations (E.1) is a linear system in 67 and 6C and can be written symbolically

as:l

s [s2.60]" = c(ce) [s2.50] . (E.3)

Because the only spatial dependence of the coefficients of £ is through C°(x, —x3)
it is advantageous to consider the eigenvalue problem in terms of the relative coor-
dinate x, — X3 and centroid coordinate (x4 + x3)/2. Since (E.la) is homogeneous
in x and (E.1) homogeneous in (x, 4 X3)/2 the eigenfunctions §Z and 6C will be
single harmonics of their homogeneous coordinate (cf. Appendix D) and can be

assumed to be of the form:

6 Zn(x) = €™ (E.4a)
6Cn(xa35) = O (x4 — 33) &M Oxb)/2 (E.4b)

The homogeneous part of the perturbation covariance eigenfunction, C’r(lh), is
expanded as
2
(h) _ [ K am) gy ik (xa—x
O (x4 — x3) _/(%)QC( ) (k) elkexa—x0) (E.5)

and introducing (E.5) to the perturbation covariance equation (E.1b), we obtain:

d’k

(AZ + Ale;) 5Oab = - / 5 [2 + Vzh(k?_zi_h + ki%h) + i (wk+ - Wk,)} C'(h) (k) eik‘(xa—xb) ,

(2n)?
(E.6a)

1To find explicitly the form of £ one needs to manipulate 8.4, C¢, in the following manner:
0ALCo = —06U, - V,C5 + (A,0U,) - VoA CE,

—(2X VadWa) - VaCop + (2 X VadZa) - VaA;' Cy

(2 X VaCay) - VadVWa — (2 X VoAT'C) - VabZa

=[(2x VaCo) - VAt — (2 x VuA'CL) - Va] 074

Similarly for 6.4, CS,.
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with ki = k £ n/2. We also have that

A e 4’k 5 1 1 Ae i n)-xq—ik-x
5Aacab:/(27r)2z(nXk)(k:Q—nQ>C(k)e(k+) a—ikx,

2
— 6in-(xa—l—xb)/2/ d’k % . (n % k,) <1 _ 1) ée(k,)eik'(x“_xb) 7

(2m)? k2 n?
(E.6b)
and similarly,
- d’k 1 I Tt ikt o
5AbCab=/(27r)2z.(k><n) (k_nQ> C (k)ek o—i(k+n)-xy
i d’k 1 1)\ A .
_ _ in(xa+xp)/2 5 S o k- (xa—x3)
e /(%)2 2 (nx ky) (ki n2> (k) e .
(E.6¢)

From (E.1b) we then obtain that

. 1 1)\ » X 11 .,
Z(nXk,) P EY) Ce(kf)—Z(nXk+) 72 T 5 C(k+)
kZ n ki n i (xat
el (Xa Xp)/2
o+2+ Vgh(k‘_?,'_h + k‘zh) +1i (wk+ —Wk_ — Wn)
= [F(k) - Flic)] e, (©1)

CM (k) =

with o = s 4 iwy,. Further,

R(6Cy) =
- V. [Z x (VoA + VA, 50]
2 Xaq=Xp
=-V éx VAL +VbA’1)/ d’k {F(k,) - F(k )} e (Xatx0)/2 pik (Xa—xb)
2 @ b (27)2 _—
d’k 2z (ik_  iky i
- _v. /(%mx (k% - ki) [F(ko) = P(ey)] e (E.8)

and since under the transformation k — —k we have that ky — —k_| ki — k2
and F(ky) - —F(k_), (E.8) becomes

2 ik i :
R(5C) = -V - / (‘;7:2 2 % (;:2 - Z?f) Pk e (E.9)
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Using V - (2 x pe™*) = —i2 - (n x p) e™*, we then obtain,

R(6Ch) :/ @’k z-(nxk) ( L1 ) F(k_)e™>

21)2 K2 k2
+
1 1 1 1
2 (= _ = [ ~
_52/ 42k [ x K| <k2 k:2) (k2 n2) 0 (k)
a (2m)2 0 + 2 + vop(k2h + k2P) + i (W in — wi — wn) 2(1 + vop kM) 7
(E.lO)

with kg = k+n and ks = |ks|. The last equality was obtained with the substitution
k — k —n/2. For vy, =0 (E.10) gives (3.9). Finally, using (3.3a) we obtain the

dispersion relation for the stability of the homogeneous equilibrium:

| Xk‘2<1—1) (1_1)
d?k " KO\ w2 Q(k)

1 2h — / :
oLt vantt ¢ (27[')2 o+ 2 + l/gh(kgh + k2h) + i (wk+n — Wk — wn) 2(1 + V2hk2h)

(E.11)

Equation (E.11) can be written in terms of the real and imaginary part of the

eigenvalue s as:

sp = —(1 + vgpn®) + ¢ Re[f(0)] , (E.12a)
s; = —wn +¢ Im[f(0)] . (E.12Db)

The real part of the eddy feedback contributes to the growth rate of the mean
flow and the imaginary part determines the departure of the phase speed of the
mean flow from the Rossby wave frequency. For § > 1 the marginally unstable
eigenfunctions have o; = —wy as it can be readily shown that f; is at most of
O(1) and therefore produces only a small correction to the Rossby phase speed
which is of O(f).

Equation (E.11) is solved numerically for o for a given n, 3, ¢ and Q(k)
However, in some special cases o can be solved in closed form. Such an example
is when = 0 and with vop = 0. Then (E.11) takes the form:

2 nl2 (k2 — k2 (k2 — n2) O
(5-1—1)(5—1—2):5/(;17:){2 [k x x| (k]z%;)(k )Q(Qk) —cJ, (E13)
J

and the eigenvalues are s = —3/2+ (1/4 + 5J)1/2. The value of the integral, J,
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depends only on the wavevector n and the forcing spectrum. For the ring forcing

spectrum (3.11) by using the definitions of Fig. 3.4 we have
k xn|?=n?cos’0, k?=1+n*+2nsind, (E.14)

and therefore J takes the form:

df2n(1—n cos? O(sin 6 + n/2
L / 2) costBsind +n/2) 51
1+ n?+2nsinf
- gnm —n?) cos(2p) , forn<1. (E.15)
For isotropic forcing J = 0 and there is no instability since ¢ = —1 or ¢ = —2.

When p # 0 we have instability when e > 32/[u cos(2¢)] > 0, which occurs either
when ¢ > 0 and 0 < ¢ < 45° or when p < 0 and 45° < ¢ < 90°.

E.2 DERIVATION OF EXPRESSION FOR fr FOR THE RING FORCING SPECTRUM

In this section we will derive the expression (3.13) for f, = Re[f(0)] for the ring
forcing spectrum (3.11). For vo, = 0, 0 = 0 and for spectrum (3.11) we have that

nl2 (k 2) (k2 _ 2
f():/kdkde k x n|? (k2 — k2)(k )

@m)? pig2n2 [2 i (en — o wk)} 2 G0 —p)d(k—1)

~Fdo Jkxnl? (k2= 1)(1—n?)

5 27 |22 [2 + 1 (Wktn — Wn — W)

} GO —o). (E.16)

Using the definitions of Fig. 3.4 we have:

nsin ¢ + cos(f — )
1+n2+2nsind

Wn = —,BSIHQO/TL y Wk = _6 COS(H - SO) y Wk4n = _/8

(E.17)
and together with (E.14) we get
2
N
ND 21
0 —
/D2 Ty = O/F(H,n) df (E.18)
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with F'(6,n) defined by (3.14) and

Do(6,n) = 2(1 +n? + 2nsind) (E.19a)
Dy(0,1n) = (1 +n* + 2nsin ) sin o/n + n? cos (6 — ) + nsin (20 — ) ,
(E.19b)
N(,n) = 1 n (1 — n2) cos? A(sin +n/2) GO — @) . (E.19¢)
m

Note that 8D, is
BDs(0,1) = k2 (wWieyn — Wn — Wk) (E.20)
and therefore vanishing of Dy occurs when the resonant condition is satisfied:
Wn + Wk = Wkin - (E.21)

Also note that the F' defined by (3.14) remains unchanged when the angle
¢ is shifted by 180° (¢ — 180° + ¢) or when there is a simultaneous shift of
@ — 180° — ¢ and # — 180° — 0. As a result, it suffices to only consider cases
with 0 < ¢ <90°.

E.3 ASYMPTOTIC EXPRESSION FOR THE EIGENVALUE S, AT HIGH SUPERCRITI-
CALITY

At high supercriticality, i.e., as ¢ — 0o, the maximal growth rate, s,, of the
large-scale structure with wavevector n scales with /¢ while the frequency of this
eigenstructure, s;, asymptotes to values s; & —wy,.

Specifically, s, asymptotes to:

szzs/éil;|nxk|2(é—;) (;—;)62(21‘) (E.22)

This asymptotic expression for the growth rate and phase speed of the large-
scale structure is useful for tracing the maximal growth rates as a function of
supercriticality using Newton’s iterations.

The asymptotic growth rates depend only on the forcing distribution and for
the forcing spectrum (3.11) are shown in Fig. E.1 for g > 0 and u < 0. It can

be shown that the asymptotic growth rate vanishes for exactly isotropic forcing.
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Asymptotically the growth rates do not depend on the damping rate of the mean
flow, ry, (cf. chapter 5).

0 L L L L 0
0 02 04 06 08 1 0 02 04 06 08 1
Ny Ny

Figure E.1: The ¢ — +o0o asymptotic maximal growth rate s, scaled by /¢ as a function
of the wavenumbers (ns,ny) of the S3T eigenfunction. Shown are contours for s, > 0 and the
zero contour is marked with a thick solid line. The asymptotic growth rate is independent of 3
and dissipation and depends only the forcing spectrum. Shown are the asymptotic growth rates
for forcing (3.11) for (a) g =1 and (b) g = —1. For p > 0 maximal instability occurs for jet
structures, while for p < 0 maximal instability occurs for non-zonal structures.
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Asymptotic expressions for eddy feedback

In this Appendix we calculate in closed form asymptotic expressions for the eddy
feedback induced by a mean flow perturbation with wavevector n, in the cases
B<1and 8> 1.

F.1 CasE k1

When 8 < 1 and for n satisfying 8/n < 1, we expand F(0,n) = F(6,n) +
F(180° 4 6,n) in (3.13) in powers of 3. Since F is a function of 3% we have the
expansion:

F=Fo+ B F+0(p, (F.1)

with Fo = % 6%5]:’6:0. The leading order term is:

14+ n? —4sin%6
(1+n?)2 —4n2sin? 6

_loa e N 2
-7:0—7rn (1 n)g(9 ©) cos” 0 | (F.2)

due to the property G(180° 4+ 0) = G(0). Positive values of Fy indicate that

the stochastically forced waves with phase lines inclined at angle 8 with respect

to the wavevector n (cf. Fig. 3.4) induce upgradient vorticity fluxes to a mean

157



flow with wavenumber n when 8 = 0. Given that n < 1 and G > 0, Fy is
positive for any forcing distribution, only in the sector shown in Fig. 3.5a in
which 4sin? @ < 1+ n?. Specifically, in the absence of 3 all waves with |0 < 30°
reinforce mean flows with n < 1. Note that the condition 4sin?6 < 1 + n? is
also the necessary condition for modulational instability of a Rossby wave with
wavevector components (cos#,sin ) to any mean flow (zonal or non-zonal) of
total wavenumber n for g < 1 (Gill, 1974).

The total vorticity flux feedback f, for G(6 — ¢) = 1 + pcos[2(6 — ¢)] is at
leading order:

fr= %nQ (1 — n2) cos(2¢) + O(5?) , (F.3)

which is proportional to the anisotropy factor, . The maximum feedback factor

is in this case
_

Frimas = 2. (F.4)
and is achieved for mean flows with n = 1/y/2. This maximum is achieved for
zonal jets (o = 0°) if © > 0 and for meridional jets (¢ = 90°) if © < 0. This
implies that for 5 < 1 the first structures to become unstable are zonal jets if
@ > 0 and meridional jets if 4 < 0, as shown in Fig. 3.12c.

For isotropic forcing (u = 0), the leading order term is zero and f, depends

quadratically on 5:

4
fr= 522—4 {2 + cos(2g0)] +0(BYH for n<1, (F.5)

producing upgradient fluxes for n < 1. Note that for the delta function ring
forcing f02 T Fodf is discontinuous at n = 1, with positive values for n = 1= and
negative values for n = 17. The accuracy of these asymptotic expressions is
shown in Fig. F.1. The maximum feedback factor, shown in Fig. 3.12a, is
342
fr,max :67 ) (FG)
and is attained by zonal jets (¢ = 0°) with wavenumber n — 1~ as § — 0, a

result that was previously derived by Srinivasan and Young (2012). The accuracy
of (F.4) and (F.6) extends to 8 ~ 0.1, as shown in Fig. 3.12a.
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Figure F.1: Feedback factor f,. for a non-zonal perturbation with n = 0.4751 and ¢ = 10°
(which belongs in region A of Fig. 3.8a) (solid lines) in the case of a forcing covariance with (a)
1 =0and (b) p=1/4. Also shown are asymptotic expressions for § < 1 ((F.6) in (a) and (F.4)
in (b)) and the resonant contribution (3.17) for 8 > 1 (dash-dot). For 8 > 1, expression (F.12)
is also plotted (dashed). It can be seen that only (3.17) can captures the 871/2 decrease of f;.

F.2 CasE f>1

When 5> 1, we write (E.18) in the form:

2T
1 )
fr=gg . with 1= /FX(G,n) do | (F.7)
0
where
N Dy
F.(0,n) = ————=, F.8

and x = 1/8. When Dy ~ O(1) for all angles 6, then the feedback factor is
fr ~ O(B72). However, if Dy ~ O(S~!) for some angle 0, then as we will show in
this Appendix, f,. decays as O(8~1) or as O(3~/?). This is illustrated in Fig. F.1
showing the feedback factor f, as a function of 5 in cases in which Dy vanishes.

D, can have at most 4 roots, 0° < §; < 360° (j = 1,2,3,4), for any given
(n, ). At these angles the resonance condition (E.21) is satisfied. To calculate
asymptotic approximations to the integral I, we split the range of integration to

a small range close to the roots of Dy for which we have resonance, I ) and to a
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range away from the roots of Dy, INR):

N, [ 0500 0,436
=% / F\(6,n)dd + /FX(H,n)dQ , (F.9)
I=1 | 6, 1+36 0,—50
I](-NR) IJ(-R)

where N, is the total number of the roots of Dy and 6y = 6y,. Asymptotic
approximations to the integral over the two ranges are then found separately
using a proper rescaling for the regions close to the roots of Dy (cf. Hinch (1991)).
When the distance between two consecutive roots is [0; —0;_1| > /X, as in the
examples shown in Figs. 3.8c,e, then the dominant contribution to the integral
comes from the O(x) regions close to the roots 6;, since F,(6,n) close to §; is
approximately a Lorentzian of half-width O(x). Therefore, choosing the range 66
close to the roots to be /x < 66 < 1, Taylor expanding F,(6,n) close to §; and
rescaling 6 = 0; 4+ xu we obtain:
66/x
= >1< D/?)\,? f Objé%uuz O (£-10)
—060/x
where Dy = 9pDy and the subscript j denotes the value at 6;. In the limit

00/x — oo we obtain:
® _ LN
I X ’Dl2,j| ’

(F.11)
and as a result, the resonant contribution produces the asymptotic approximation:

Ny
R) _ 1 TN

£ :
6 j=1 ‘DIQ,]’

(F.12)

However, special attention should be given to the case in which two consecutive
roots are close to each other. When |6; — 6;-1| ~ O(/X) then D) ; ~ O(/x)
and f,gR) scales as 1/4/0 instead of 1/ for 8 > 1. Indeed, when F) is double
peaked, as in Fig. 3.8d, the dominant contribution comes from the whole range
between the two resonant angles which are a distance O(,/x) apart. The proper
scaling for the angles close to 8; is therefore 6 = 6; + /xu. Taylor expanding the
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denominator under this scaling we obtain:

X2Di+D35 = x*D§ j+xD% u* +x**Dh /DY jud+x* < Dy + 317 Dy ) u*+0(x°?) |
(F.13)

where Dy = 934Dy and Dy’ = 935yDa. When Dh; ~ O(y/x) all the terms in

(F.13) are O(x?) and writing Dy, = fd(n, 0;) = \/x d;, where d is of O(1), the

leading order resonant contribution is:

—3/2 AL N; Dy j du

D%J + dj2 u? +d;pjud + i,ojzu4

R) _ .
I =y Lo, (Fag)

56/ /%

where p; = Dy ;. In the limit §0/,/x — oo the integral can be evaluated
from the residues from two of the four poles of the integrand. The two poles
1/2 pil (2 + )12,

wj = arctan(2/k;) and k; = dJQ-DOJI»\ pj|1 is an increasing function of the distance

are at u = —dj/p; + |2;|?sgn (pj) eWi/? | where |z;| = Do

between the two roots of Dy. Therefore:

®R) _  —3/2_TN;N -1
I; X o2 pj|1/2 +0(x ), (F.15)

and

N,
1 T®) 3 "
= F.1

22 7 212D1/2|p vz’ (F-16)
which is exactly (3.17). The factor 1/2 in (F.16) arises because the range of
integration includes both angles and (F.15) must be divided by 2, in order to

avoid double counting. The resonant response is proportional to
2 -3/4 1
n=2(k"+4) cse |5 arctan (2/k)| , (F.17)

which is always positive, because k > 0 as Dy > 0. The factor 7 is shown as a
function of k (which is a rough measure of the distance between the roots) in
Fig. F.2. We observe that the maximum value is attained at xk = 2/v/3 ~ 1.16,
that is when the roots are at a distance O(x'/?) apart. Note also that by taking
the limit of the resonant angles being away from each other, that is by taking
the limit k > 1, n ~ 2/4/k and (F.16) reduces to (F.12). Consequently, (F.16)
is a valid asymptotic expression regardless of the distance between the roots 0;.

The accuracy of (F.12) and (F.16) in comparison with the numerically obtained
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integral is shown in Fig. F.1.

The sign of the resonant contribution depends only on the sign of A/. From (E.19c¢)
we see that N/ > 0 when sin€ > —n/2 for n < 1; this region is highlighted with
light shading in Fig. F.3. It should be noted that for the important case of
zonal jet perturbations (¢ = 0°) the resonant contribution is exactly zero because
N =0, as shown in Fig. F.3a. The asymptotic behavior of the feedback factor
for this case is found from the non-resonant part of the integral. Expanding in

this case the integrand for xy < 1, we obtain to leading order:
frm SV = (1 =n®) 2+ B2+ 057, (F.18)
with the maximum feedback gain

frmax = 2+ )2+ 0B, (F.19)

occurring for n — 0.

Consider now non-zonal perturbations (¢ # 0°). There is a large region in the
(n,¢) plane (region D in Fig. 3.8a) in which D has no roots and f, = O(572).
For larger values of n (region B in Fig. 3.8a), and for any given ¢, Dy = 0 for
exactly two 6; that satisfy the inequality sinf; < —n/2. Consequently, N; < 0
and the resonant contribution from these roots is negative. For even larger values
of n (regions A and C in Fig. 3.8a), Dy has exactly 4 roots. Only two of the
roots in region A produce positive resonant contributions. Note also that region
A extends to ¢ < 60° and ¢ > 120°.1

The maximum response, which is O(5~1/2), arises in region A close to the
curve separating regions A and C where k ~ 1.16. While the roots of Dy are
independent of 3, the location and the size of the region of maximum response
depends on S through the dependence of x on 5. However, as § increases this

dependence is weak and as § — oo the maximum response occurs in a narrow

Tt can be shown that fluxes from the resonant contributions for n < 1 are necessarily
downgradient (negative) for 60° < ¢ < 120°. Proof: A positive contribution is produced when
the D2 = 0 curve enters into the AV > 0, highlighted with light grey in Fig. F.3. There are 4
roots of D2 on the unit circle n =1 (on which also N/ = 0), at angles: 6 = 210°, 270°, 330° and
0 = 90° + 2¢ (marked with A, B, C and D respectively). The D2 = 0 curve can cross the curve
AOC, which separates positive from negative A, only at points A and C, since D2 = 0 only at
these points on AOC. Therefore, the Do = 0 curve can enter the N' > 0 region i) through D, if
it lies outside the arc ABC, and/or ii) through A, C. However, for 60° < ¢ < 120° point D lies
within the arc ABC' and moreover, the gradient VD at points A and C is oriented in such way
that does not allow the D2 = 0 curve to enter N > 0, as 9, D2 < 0 and 99Dz < 0 (9pD2 > 0) at
point A (point C).
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Figure F.2: The factor n = 2 (k* 4+ 4)~%* csc [§ arctan (2/k)] as a function of « that is a
measure of the distance between two consecutive resonant angles. The maximum value of n
marked with an open circle (and consequently of the feedback gain that is proportional to ) is
n=3%%/2 ~ 1.14 and it is achieved at x = 2/+/3 ~ 1.16. Also shown is the asymptote n = 2/+/k
that 7 follows for x > 1 (dashed). This suggests that the resonant contribution is maximum
when the two roots are very close to each other (x ~ 1) but not on top of each other (r < 1).

region near n ~ 0.5 and ¢ ~ 10°, marked with a star in Fig. 3.8a. The width of

this region decreases with 3, making it exceedingly hard to locate for large 3,

and the asymptotic approach of (n,¢) to (0.5,10°) is shown in Figs. 3.12b,c.
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=0 ¢ =15° ¢ =15

Figure F.3: Zero contours of D2(0,n) for (a) zonal jet perturbations (¢ = 0°), (b) non-zonal
perturbations with ¢ = 15° and (c) non-zonal perturbations with ¢ = 75° in a (6,n) polar plot.
Shaded areas mark n < 1. Light shade corresponds to (6,n) satisfying sin > —n/2 for which
we have positive resonant contributions (A > 0), while dark areas correspond to sinf < —n/2
for which we have negative resonant contributions (A < 0). Points of intersection of the D = 0
curve with the unit circle are marked with A, B, C, D. The radial grid interval is An = 0.25.
The curve D2 = 0 does not enter the ' > 0 area for 60° < ¢ < 120°.
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Formal equivalence between the S3T
instability of a homogeneous equilibrium with
the modulational instability of a

corresponding basic flow

In this Appendix we demonstrate the formal equivalence between the modulational
instability (MI) of any solution of the barotropic equation, which may be in general
time dependent but has stationary power spectrum, with the S3T instability of the
homogeneous state with the same power spectrum. Consider a solution g (x,t),
with vorticity (¢ = Avg, of the inviscid and unforced nonlinear barotropic
equation (2.1) with time-independent power spectrum. Because J (g, () = 0,

(¢ satisfies the equation

& (e =LW¢q (G.1)
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with L™ = 2. (8 x V) A=, Linear perturbations d¢ to this solution evolve

according to the equation:

8, 6¢C =L ¢, (G.2)
where
L=—ug -V+(Aug) - VA 42 (BxV)A™ = £+ W) (G.3)
cy, £

is the time-dependent linear operator about (¢ that has been decomposed into a
spatially homogeneous operator, £, that governs the evolution of (g and the
inhomogeneous operator Ly that depends on (g. The hydrodynamic instability
of (¢ is ascertained when the largest Lyapunov exponent of (G.2) is positive.
We proceed with the study of the MI by decomposing the perturbation into
a mean 6Z = (6¢) and deviations from the mean §¢’ = §¢ — 6Z, where (o)
is an averaging operation. The averaging operation in MI is projection to the
eigenstructure with wavenumber n, which is orthogonal to (g, because only
orthogonal eigenstructures to (g could become unstable. With this averaging
operator ((g) = 0, and therefore (¢ = (/;, whereas the perturbations has a non-
zero mean, 67, and a deviation and is expressed as 6 = §Z + 6¢’. For example, if
Y is a sum of Rossby waves as in (4.9) the perturbation field from Bloch’s theorem
comprises Fourier components with wavenumbers n, n+p;, n+2p;, n£3p;,...
for all the p;. In this case 6Z is a plane wave with wavenumber n and ¢’
comprises the remaining Fourier components. With these definitions (G.2) is

equivalently written as:
0 (6Z +0¢) = L6 Z + LW + L 6¢" + LMo 7 (G.4)

where L, is primed in order to stress that the operator linearly depends on the
deviation quantity (. Equation (G.4) is then separated to form an equivalent
system of equations for the evolution of the mean perturbation, 67, and the

deviation perturbation, 6’

807 = LM6Z + (L56¢) | (G.5a)
9 0¢ = LW + L 0Z + L6 — (L 8¢") (G.5b)
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The stability equation (G.2) and the stability equations (G.5) for §Z and ¢’ are
equivalent.
In MI studies usually the term Ly 6¢ — (L 8¢’) in (G.5b) is neglected and the

stability of the following simpler system is studied:

0072 = LWsZ + (L£56¢) (G.6a)
8,0¢ = LM + L5067 . (G.6b)

For example, if 1 is in the form of (4.9) the neglected term comprises waves
with wavevectors n & 2p;, n + 3pj;,... and the truncated system (G.6) allows
only interaction between the primary finite amplitude waves p;, the perturbation
n and the waves n £ p;. If (g is a single wave p (as in MI studies), (G.6) is
referred to as the 4 mode truncation or “4MT” system since it comprises only
modes p, n and n + p.

However, instead of studying the MI stability of §Z and 6¢’ using the approxi-
mate equations (G.6), we can equivalently study the stability of 0Z and

6C (Xas%p,1) = ( C6(%a, ) OC(x4,1) + (5 (30, 1) 6 (%0, 1) )
= (€6 0C+ C6p G ) - (G.7)

With these definitions we obtain from (G.1) and (G.6b) the evolution equation
for 0C:

06C = ((0C.0) 0Ch + (0uClsp) 0C, + Csa (D10G) + Cloy (915C,) )
= (£ + L7 ) 60+ ( o Lo 02+ i L0070 ) - (G.8)
We note from the definition of Ly, (cf. (G.3)) that:
L06Z =— (2% VYg)-VéZ+ (2 x V() ViV
- (z X Vaz) Vel — (z x V(S\I/) Ve
= (A0U) - (Vi) — (6U) - (Vi) = 6A g (G.9)
where dU = z x VIV is the velocity field associated with 67 and 4 = —0U-V +
[(A §U)-V] A~ is the operator that also appears in (3.2b). As a result, (G.8)

becomes:

00C = (LW + L7 )60 + (040 +34,) CF (G.10)
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where C¢ = <Cé;7a§é7b>. Returning now to (G.6a) we note that (L0¢") = R(6C),
where R(0C) is defined in (2.8), as:

R(5C) = =V |2 x (Vb + Doy ) (G686, + Gy L)

=9 Lax ((vupac + (Voues) |
=~V (uG ¢’ + o' ;)
= (—uf - V¢ + (Aug) - Vo) = (£50() . (G.11)

Consequently, the MI of ¢/, in the approximation (G.6) is equivalently deter-
mined from the stability of the system:

8,62 =LM™sZ +R(6C) , (G.12a)
0C = (LW + L7 ) 6C + (544 +34,) CF (G.12b)

which is identical to equations (3.2) that determine the S3T stability of the
homogeneous equilibrium with zero mean flow, U¢ = 0, and equilibrium covariance
C® = C% under the ergodic assumption that ensemble averages are equal to
averages under operation ( e ).

For example, consider the nonlinear solution

2w

Y(x,t) = /a(@) cos(p - x —wpt)dl , (G.13)
0

with wavevectors p = (cos,sin#) on the unit circle (p = 1) and take 8 = (0, ).
Expanding the plane waves into cylindrical waves:
+o00o
ei[(x+,8t) cosO+ysinf] _ Z ime(R)eim(¢—9) , (G.14)

m=—0Q0

with R? = (z+St)?+42, ¢ = arctan [y/(m + Bt)} and J,,, the m-th Bessel function

of the first kind, this can be shown to be the non-dispersive structure

+oo
b(x + Bt,y) = Re [ > Jm<R>eim¢] , (G.15)

m=—00

propagating westward with velocity 3, where v, = fo% a(f) e " df. The re-
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sults in this Appendix show that the MI of the propagating structure (G.13)
in the approximation (G.6) is equivalent to the S3T instability of the homoge-
neous equilibrium with covariance C¢ prescribed by power spectrum C’e(k) =
(27)%]a(h))? (k — 1). Note that this S3T equilibrium is also an exact homo-
geneous statistical equilibrium of the nonlinear barotropic equations without

approximation.
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Specification of the forcing structures used in

chapter 5

In chapter 5 three spatial structure of stochastic forcing are used in the inves-
tigation of the correspondence among S3T, QL and NL dynamics: a forcing
with narrow isotropic ring spectrum (IRFn), a forcing with wide isotropic ring
spectrum (IRFw) and a forcing with non-isotropic spectrum (NIF).

For the IRFn we take the forcing spectrum

N c if |k— ks <Ok
Qk: ' | f’— f (Hl)
0 if |k:—k:f]>5kforkx:0.

The constant ¢ is chosen so that Qk satisfies

22%:1. (H.2)

ko, ky

and therefore, according to (A.20), the energy injection rate by Qx is a unit. For

the narrow ring forcing we choose ky = 14 and d0ky = 1.
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For the IRFw we take the forcing spectrum to be

o - { cexp [—(k— ky)?/(20k3)] i ky # 0 1)

0 ifky=0

Again c is chosen so that (H.2) is satisfied. For the wide ring forcing we choose
]{Zf = 14 and (5kf =8.

For NIF we force the zonal wavenumbers k, = 1,..., Ny with power:
Qx = ckxd2e_k§d2 , (H.4)

with constants ¢, chosen in such manner so that for a fixed zonal wavenumber
kz,
1
S e = W (1)
™ 2(k‘z + k‘y) N, k
so that all zonal wavenumbers k, inject the same energy input rate and the total
injection rate by Qk is unity. For the anisotropic forcing we force wavenumbers
k=1,...,14 and d = 1/5.
Comparison of the forcing spectra structure (H.1), (H.3) and (H.4) as well all

forcing realizations that they induce are shown in Fig. 5.1.
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Determination of inhomogeneous zonal jet
S3T equilibrium solutions using Newton’s

1teration

In this appendix we present a method for determining stationary equilibrium
solutions (Ue(y), C¢(xq — Tp, Ya, yb)) of the S3T system (2.13). Remember that
for solutions of the form (U(y,t),C(xa - xb,ya,yb,t)> and for the usual ori-
entation of B8 = (0,5) the S3T system (2.13) collapses to the simpler S3Tz
system (2.21) and therefore it is sufficient to determine stationary equilibrium

solutions of the S3Tz system, or equivalently (cf. Appendix C.2.1), stationary

solutions (UE, feet, ]evk> of (C.22) that satisfy the matrix equations:
Ny,
0= 2Re {vecd (i A,;:Ciz)} —U*, (L1a)
ke=1

0=Ag, (U°) C;. +C5 Ay, (U +eQy, , fork,=1,...,N,. (L1b)

We determine the equilibrium solution satisfying (I.1a) through Newton’s
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iterations. However instead of iterating both the U and Cj, towards the solution,
which is computationally very costly, for each flow iteration U we determine
the Cy, that satisfy (I.1b) and treat with this understanding the Cj_ as linear
functions of U, writing Cy, = Ly, (U). This approach has the disadvantage that
we constrain the iteration to the manifold of hydrodynamically stable flows for
which there exist physical steady covariances that satisfy (I.1b). Under these
conditions we can obtain the equilibrium state by solving for U€¢ the linear

equation:

G (U°) = % 2 Re [Vecd ik A L1, (U) )} —U°=0. (1.2)
kz=1

In order to solve (I.2) with Newton’s method we start the iteration by selecting a

hydrodynamically stable flow U°. If G (U(O)) = 0 no iteration is needed. If not,

assume that the equilibrium U is nearby, and hence to first order it must satisfy:

oG 0
= ,'U% ZU(O) |: :| i — () I
0=Gi (U)~G; (UO) + aUUm)ij(U] u) (1.3)
where 9G/9U is is the Jacobian matrix of G with elements [0G /0U],; = 0G;/0Uj;,
U; and G are the N, elements of U and G respectively and subscript U ©) denotes
that the matrix elements are evaluated at U = U(?). The iteration is continued
by taking as the new iterant the U that satisfies (1.3), i.e.,

OGN !
1) _ g7 _ (94
vl —u ( 80_)

(0)
i G (U, (1.4)

where (G /OU) ™! is inverse of the Jacobian matrix dG/OU. We approximate
the elements of 0G/0U |;;_g;0) with

9G;
aU;

G, (U(o) + hej) —G; (U(O) _ hej)
~ 2h ’

(L5)

U

where e; is the unit-vector in the j-th direction with elements [e;]; = d;; and h > 0
is sufficiently small. After U™ is calculated from (I.4) we repeat the iteration. If

the initial guess UY is close to the equilibrium U® the iteration converges rapidly
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to the equilibrium solution. We consider the iterations converged if

2 {Gj (U(N))}2 10-14
5 {U}")r < .
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Stability of inhomogeneous S3T equilibrium

solutions

Consider a solution (Z,C') of the S3T system:
BZ+J(V,Z+B-x)=R(C)— Z, (J.1a)
hCap = |Aa(U) + Ay(U)| Cap + € Qus (J.1)

with A defined in (2.5). Linear perturbations (6Z,dC) about this solution obey:

8,67 = A(U)8Z + R(6C) (J.22)
8 6C.y, = [AQ(U) + Ab(U)} 5Clp + (5,4@ + 5Ab) Cap | (J.2b)

with 04 = A(U + 6U) — A(U). The stability of (Z,C) is determined by the
top Lyapunov exponent of (J.2), which is calculated numerically using the power
method. We initiate the integration of (J.2) with a normalized perturbation

state (6Z,0C), using with any norm. At every time-step, h, we calculate the
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perturbation state growth,

NI (uwzufz),ac(jh))n) e 03

and then renormalize the perturbation state before moving to the next time-step.
After sufficient time-steps the growth A converges to the top Lyapunov exponent
and the state (6Z,0C) to the first Lyapunov vector.

The time-integration of the discretized (J.2) proceeds as described in Ap-
pendix C.2.2 and system (J.2) takes the form:

d

€52 = A(U)Z + R(5C) (J.4a)
%(m — A(U)6C + 6C [A(U)]" + 6AC + C (5A)T | (J.4b)

where R is defined in (C.33), A is defined in (C.30) and 6A = A(U+6U) —A(U).
In (J.4) 6Z is an (N, N,)-column vectors while JC is an (N, N,) x (N, N,) matrix.

J.1 STABILITY OF ZONAL JET EQUILIBRIA

The homogeneity in x of zonal jet equilibria enables us to seek S3T eigenfunctions

in the form

57(x,t) = e / dny an, (ny, t) €™ (J.52)

0C (Xq, Xp, t) = ei"z(xﬁxb)/z/dkx 6Cr, (ks Ya, yp, t) e (@a=20) (J.5b)

i.e., the perturbation mean flow is a single harmonic in & with wavenumber
n, and the inhomogeneous part of the perturbation covariance is also a single
harmonic with the same wavenumber. We will show that by using (J.5) the S3T
perturbation system (J.2) results in a smaller system of decoupled equations for
Fourier components a,,, (ny,t) and 6C,,, (kz, Ya, Yp, t)-

In an infinite domain the wavenumbers n,, n, and k; assume continuous
values. However, system (J.2b) is solved in a channel of dimension L, x L,
with periodic boundary conditions. For a box with L, = L, = 2w, the periodic

boundary conditions on §Z impose that n, and n, take only integer values and
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the periodicity on dC imposes that

integer , for n, even
ky = (J.6)
half-integer, for n, odd .

(A number m is called half-integer when m + 1/2 € Z, which implies that
m = (2k +1)/2 for k € Z.) Therefore, after redefining k; — kg + ng/2 so that k,

assumes integer values for any value of n,, the eigenfunction (J.5) takes the form:

6 Z(x,t) = =" Z Oy (£) €Y (J.7a)
Ny

5C (Xq, Xp, ) = e (Tate)/2 Z 6Chynw (Yas Yoy t)ellhe—ne/2)(@a=m) (J.7b)
ks

where notation (C.4) is used in the summation. Notice that we have chosen
to define 6Cy, ,,, as the Fourier coefficient that corresponds to e!(ka=na/2)(za=ms),

The equilibrium covariance C¢ is also expanded as in Appendix C.2.1,

C(Xay Xp) = Z C’,ﬁz (ya,yb)eikz(“_xb) . (J.8a)
ke

We want to write now the S3T perturbation system (J.2) in terms of the

Fourier coefficients av,, 5, (t) and 6Chy o (Yas b, t). Consider first a single harmonic

of (J.7a) with vorticity: 6Z, = —n?e™*. Then:
[5\11n,5Un, Vazn} = [— 1/n2,—(zx V) /n2,in] 67 (J.9a)
and
05,00 = eina (Tatap)/2 Z iky 50@,% (Ya, Yb) el(kz—na/2)(za—a) , (J.10a)
ke
02,0C = "t EN T i (kg —1g) 6Ch, i, (yas ) e~/ D =) (3.10b)
kg
A,SC = eina (Taty)/2 Z (aza _ k‘g) 5@,9%% (Yar Ub) el(kz—ng /2)(za—xp) ., (J.10¢)
kg
ApdC = eina (Tatap)/2 Z {8517 — (ky — nz)ﬂ (50]%7”1 (Ya> Yp) el(kz—na/2)(za—mp) ,
kg

(J.10d)
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imply that:

—(U;@xa + Ulfaa:b) 5Cnx =
_ einz(:ca+xb)/2 Z [_ik:cUs 5(‘?}%’7% (3/&7 yb)
ko
ti(ke = 12)Uf 6Ch, m, (ya, )| €Feme/Deemm) (7 11a)

—(0U40z, + 6Uy0,,)C° =

= =" [6Ua ik CF, (v, 1) + 8Us (<iks) CF, (ya, )| o)
ke

= iny ele (Tatay)/2 Z { {(1]% 5Eny7a) C’]‘;‘I (Ya, yb)] eilkatna/2)(za—2p)
ke
+ [C’,ﬁm (Ya> Yb) (—ikzz 5Eny,b)} ei(kgc—nx/Q)(Ia—mb)}

iy elnelatan)/2 3 { [i(ks — 120) 6B, 0 Cf, o, (s w0)]
ka

+ [C’Ez (Ya> Uv) (—ikx 5Eny’b)} }ei(kznz/Q)(:va:pb) ?
(J.11b)

with the notation dE,, = e™¥. We see that each component of (J.2b) has as a
common factor the term el”(#a*26)/2 For any mean flow perturbation (J.7a) we
can rewrite (J.2b) as a system of matrix equations for the perturbation covariances
matrices 6Cp, n,, with elements [0Cg, n, (t)],, = 6Chy s (Yar Y, t), and equilibrium
covariance matrices Cj_ with elements [Cix}ab = C’,ﬁx (Ya, yp). Consequently, for

the usual orientation 8 = (0, ), each 6Cy, ,,, satisfies:

%5%7% = A}, 0Cs, . + 6Ck, (S )T
3 iy [, o+ € (A tn,) |
y (J.12)
with:
f= —ik U — ik, (B1-Ug, ) A -1 (J.13a)
0Pty = —OEn, (+nyked +in,Dy) (1402451 (J.13b)
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and 6E,,, = diag(e™).
Because 6C' and C*¢ are symmetric to the exchange x, <> x; and further because

C* is real, we have that

fo=(ce)t =) (J.14a)

5C o, = (Ch ) - (J.14b)

From (J.14a) we see that is only necessary to determine C for non-negative k.
In general, if C° has non-zero Cj_ only for k; = 1,..., Ny then for a fixed n, we
only need to solve for 2(Nj + n,) + 1 perturbation covariance matrices 0Cy, 5, ,
since perturbation covariances with |k,| > Ny + n, are necessarily zero because
they do not couple with any of the non-zero Cj_. In practice however, we only
solve for the first Ny, 4 2n, matrices 6Cy, ,, and deduce from them the rest Nj 41
using the symmetry (J.14b). Note that for n, = 0 perturbations, in the case
that C _q # 0 we see that we need to solve for Nj + 1 perturbation covariances
0Cp, 0, and not for IV as it is claimed above. However, it can be proven that
0Ch,=0,n,=0 = 0, even if Cj, _, # 0 and therefore only N}, perturbation covariances
are non-zero.

Turning now to the mean flow perturbation equation (J.2a) we want to express
the Reynolds stress divergence associated with perturbation covariance dC' in

terms of the covariances §Cy, .. At point X, the Reynolds stress divergence is

R(5C)

1
SN [ <8yaA;1 + 0,00, (005" + abe,;l)) 504

X=Xm Xq=Xp

X=Xm

(J.15)

Using (J.5) and expressing everything in term of the matrices 6Cy, ,,, we get

Xa=Xp }

— 9, {2 > (0uAT 40,0,

ke=—(Ni+ng)

0, { % (0082 +0,8,1) 6Cas

X=Xm

[einz(aza+:cb)/2 5c~’kz,nz (ya’ yb) ei(kz—nz/Z)(za—xb)

} Xaq=X}p }
X=X

m
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Nk‘l'”z

1 .
= ax{2emw<%+wb>/2 > DAl aCk, .,

T .
+Cy, n, (Al;nlfnz) (Dy)T ol(ka—na/2)(@a—zs)

Xaq=Xp }

ab
X=Xm
= Jingetm S DyA; ! 6Cy, n, + 0Ci, n, (Az;lfnz) (D)
(1.16)
Similarly,

_ 9, { % (00,8 + 00, 0,1) 6C

X=Xm

Xa=Xp }

1 . Nk+nx T
= — e 4D, veed S ikeBL 6Ck, i, + 0Ck, i, (Az?f—nx) [—i(ky — ng)] :

(J.17)

From (J.16) and (J.17) it can be seen that the e dependance factors out and
therefore the Reynolds stress divergence takes the form R(6C) = e™® R, (6Cy,, ).
After discretization R, (0C,,) is approximated by the column vector 0 R,

SR, = = Z in, vecd [DyA,;zl 0Ch,me +0Ch, (DyAlzzl_nJ
k:c:_(Nk+n:C)

ky—ng

. -1 1 T .
+ Dy vecd [lszkx 0Ch, ne + 0Chy e (A ) [—i(ky — nz)]] } )
(J.18)

(For a homogeneous S3T equilibrium, i.e., in the absence of mean flow U¢ = 0, the
Reynolds stress Ry, (0C,,, ) becomes proportional to €Y or §R,,, is proportional
to vecd[dEp,].)

Note that the operator DyA,;C1 appearing in (J.16) is ill-defined for k, = 0,
since then A,;zl is the non-invertible operator (D, 12, In this case we calculate
DyA,;1 as the pseudoinverse of D, using its SVD decomposition and then by

removing the zero singular values of D,,.
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After all these consideration the discrete version of (J.2) is:

d
%0, = A, 02, +0R,, . (J.19a)
d
Ny/2—-1 T
+ Z anw,ny [6Akznz,nz,ny 21—111 + Ciz (5Asz,nz,ny) :| b
ny=—Ny/2

for k, =1,..., N+ 2n, ,
(J.19b)

where 6Zy, is the Ny-column vector with elements [6Zy, (t)]a = 3=, ¥y 0, (1) elnyYa
This system has a state of 2Ny+2(Nk+2nx)N§ real variables. For N, = N, = 128,
Nj, = 15 and n, = 2 this gives an order of 400-fold decrease in the dimension of
the state variable compared to the full S3T perturbation system (J.4).

An example demonstrating the convergence of the growth A to the top Lyapunov

exponent using (J.19) is shown in Fig. 6.11e.
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